Skip to main content
Log in

Motor Asymmetry and the Learning of New Skills by Animals

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to study the interaction between the ability to learn a new motor skill and the preference for the right or left forelimb on performing manipulatory movements in rats. The new skill was the Morris water test, in which the animals were initially trained to find a platform hidden beneath the water by swimming from the sector opposite the platform and then by swimming from sectors located to the left and right of the platform. Forelimb preference was identified in terms of the animal’s grasping food from a narrow horizontal tube, such that the rats were divided into left-handed and right-handed animals. Our findings showed that a change in the start position for the first episodes of swimming from the left or right sector significantly increased the platform-finding time in right-handed rats, as compared with left-handed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belcheva, I., Tashev, R., and Belcheva, S., “Hippocampal asymmetry in serotonergic modulation of learning and memory in rats. Laterality: Asymmetries of Body,” Brain Cogn., 12, No. 6, 475–486 (2007).

    CAS  Google Scholar 

  • Bianki, V. L., Asymmetry in Animal Brains, Nauka, Leningrad (1985).

    Google Scholar 

  • Braun, A. A., Graham, D. L., Schaefer, T. L., et al., “Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats,” Neurobiol. Learn. Mem., 97, No. 4, 402–408 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Churchwell, J. C., Morris, A. M., Musso, N. D., and Kesner, R. P., “Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory,” Neurobiol. Learn. Mem., 93, No. 3, 415–421 (2010).

    Article  PubMed  Google Scholar 

  • Collins, R. L., “On the inheritance of direction and degree of asymmetry,” in: Cerebral Lateralization in Nonhuman Species, Glick, S. D. (ed.), Academic Press, New York (1985), pp. 41–53.

    Google Scholar 

  • De Bruin, J. P, Moita, M. P., de Brabander, H. M., and Joosten, R. N., “Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions,” Neurobiol. Learn. Mem., 75, No. 2, 164–178 (2001).

    Article  PubMed  Google Scholar 

  • Denenberg, V. H., “Evolution proposes and ontogeny disposes,” Brain Lang., 73, No. 2, 274–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Denenberg, V. H., Mobraaten, L. E., Sherman, G. F., et al., “Effects of autoimmune uterine/maternal environment on cortical ectopias, behavior and autoimmunity,” Brain Res., 563, No. 1, 114–122 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Ethier, K, Le Marec, N., Rompre, P. P., and Godbout, R. “Spatial strategy elaboration in egocentric and allocentric tasks following medial prefrontal cortex lesions in the rat,” Brain Cogn., 46, No. 1–2, 134–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Fanselow, M. S. and Dong, H.-W., “Are the dorsal and ventral hippocampus functionally distinct structures?,” Neuron, 65, 7–19 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geodakyan, V. A., “Homo sapiens on the pathway to asymmetrization,” in: Anthropology in the Third Millennium, Moscow (2003), Vol. 1, pp. 170–201.

  • Ioffe, M. E., Pletneva, E. V., and Stashkevich, I. S., “The nature of functional motor asymmetry in animals: the state of the problem,” Zh. Vyssh. Nerv. Deyat., 52, No. 1, 5–16 (2002).

    CAS  Google Scholar 

  • Kleinknecht, K. R., Bedenk, B T., Kaltwasser, S. F., et al., “Hippocampusdependent place learning enables spatial flexibility in C57BL6/N mice,” Front. Behav. Neurosci. , 6, 1–7 (2012).

    Article  Google Scholar 

  • Klur, S., Muller, C., Pereira de Vasconcelos, A., et al., “Hippocampaldependent spatial memory functions might be lateralized in rats: An approach combining gene expression profiling and reversible inactivation,” Hippocampus, 19, No. 9, 800–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Levitan, S. and Reggia, J. A., “A computational model of lateralization and asymmetries in cortical maps,” Neural Comput., 12, No. 9, 2037–2062 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lipp, H. P., Collins R. L., Hausheer-Zarmakupi, Z., et al., “Paw preference and intra-/infrapyramidal mossy fibers in the hippocampus of the mouse,” Behav. Genet., 26, No. 4, 379–390 (1996).

    Article  CAS  PubMed  Google Scholar 

  • McNamara, R. K. and Skeleton, R. W., “Effects of intracranial infusions of chlordiazepoxide on spatial learning in the Morris water maze. II. Neuropharmacological specificity,” Behav. Brain Res., 59, No. 1–2, 193–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Miklyaeva, E. I., Ioffe, M. E., and Kulikov, M. A., “Innate versus learned factors determining limb preference in the rat,” Behav. Brain Res., 46, No. 2, 103–115 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Mogensen, J., Moustgaard A., Khan, U., et al., “Egocentric spatial orientation in a water maze by rats subjected to transection of the fimbriafornix and/or ablation of the prefrontal cortex,” Brain Res. Bull., 65, No. 1, 41–58 (2005).

    Article  PubMed  Google Scholar 

  • Morris, R. G. M., Schenk, F., Tweedie, F., and Jarrard, L. E., “Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning,” Eur. J. Neurosci., 2, No. 12, 1016–1028 (1990).

    Article  PubMed  Google Scholar 

  • Morris, R. G. M., “Development of water-maze procedure for studying spatial learning in the rat,” J. Neurosci. Meth., 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  • Nalivaeva, N. N., Plesneva, S. A., Chekulaeva, U. B., et al., “Some biochemical features of the rat sensorimotor cortex in right-handed, left-handed, and ambidextrous rats,” Zh. Evol. Biokhim. Fiziol., 32, No. 1, 75–81 (1996).

    CAS  PubMed  Google Scholar 

  • Neveu, P. J., “Asymmetrical brain modulation of the immune response,” Brain Res., 17, No. 1, 101–107 (1991).

    Google Scholar 

  • Olton, D. S., Walker, J. A., and Gage, F. H., “Hippocampal connections and spatial discrimination,” Brain Res., 139, No. 2, 295–308 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Peterson, G. M., “Mechanisms of handedness in the rat,” Comp. Psychol. Monogr. , 9, 1–67 (1934).

    Google Scholar 

  • Pleskacheva, M. G., Zorina, Z. A., Nikolenko, D. L., et al., “Behavior in the Morris water test in Krushinskii–Molodkina rats bred for elevated convulsive readiness,” Zh. Vyssh. Nerv. Deyat., 52, No. 3, 356–365 (2002).

    CAS  Google Scholar 

  • Podol’skii, I. Ya. and Shcheglov, I. V., “Effects of protein synthesis inhibition in the central nervous system on the formation of long-term memory on solving various behavioral tasks,” Zh. Vyssh. Nerv. Deyat., 54, No. 1, 59–67 (2004).

    Google Scholar 

  • Springer, S and G. Deutsch, Left Brain, Right Brain. Asymmetry of the Brain [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  • Stashkevich, I. S. and Kulikov M. A., “On the question of the formation of a lateralized motor skill in rats,” Zh. Vyssh. Nerv. Deyat., 50, No. 3, 457–463 (2000).

    CAS  Google Scholar 

  • Stashkevich, I. S., Pletneva, E. V., and Kulikov, M. A., “Differences in the resistance of motor preference in rats to forced retraining,” Zh. Vyssh. Nerv. Deyat., 51, No. 6, 683–689 (2001).

    CAS  Google Scholar 

  • Tan, U. and Kutlu, N., “The relationships between paw preference and the right- and left-brain weights in male and female adult cats: ipsilateral and contralateral motor control with regard to asymmetric postural and manipulative actions,” Int. J. Neurosci., 69, No. 1–4, 21–34 (1993).

    CAS  PubMed  Google Scholar 

  • Varlinskaya, E. I., Chasovnikova, T. I., Makarova, T. M., et al., “Consequences of intraspecies isolation at adult age in rats (right-handed, left-handed, and ambidextrous animals),” Zh. Vyssh. Nerv. Deyat., 43, No. 6, 1124–1128 (1993).

    Google Scholar 

  • Wu, H. M., Wang, C., Wang, X. L., et al., “Correlations between angiotensinase activity asymmetries in the brain and paw preference in rats,” Neuropeptides, 44, No. 3, 253–259 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Budilin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 2, pp. 201–207, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budilin, S.Y., Pletneva, E.V., Ioffe, M.E. et al. Motor Asymmetry and the Learning of New Skills by Animals. Neurosci Behav Physi 45, 1063–1067 (2015). https://doi.org/10.1007/s11055-015-0186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0186-5

Keywords

Navigation