Skip to main content
Log in

EEG Spectral Characteristics During Voluntary Motor Activity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

EEG spectral characteristics were studied in 11 essentially healthy volunteers during performance of unfamiliar finger movements with both hands with a voluntary rhythm. As compared with the resting state, preparation and performance of voluntary movements occurred on the background of decreased activation levels in almost all areas of the cortex except the right frontal area, where the EEG showed a clear increase in the power of fast (especially γ) frequencies regardless of which hand was used to perform the movements. This may be evidence for the direct involvement of this area in the processes underlying the planning, initialization, and control of voluntary movement activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrick, T. R., Mackay, C. E., Prima, S., et al., “Anatomical analysis of cerebral asymmetry: an exploratory study of the relationship between brain torque and planum temporale asymmetry,” Neuroimage, 24, No. 3, 678–691 (2005).

    Article  PubMed  Google Scholar 

  2. Birbaumer, N., “Brain-computer interface research: coming of age,” Clin. Neurophysiol., 117, 479–483 (2006).

    Article  PubMed  Google Scholar 

  3. Boitsova, Yu. A. and Dan’ko, S. G., “EEG changes on comparison of the state of rest with the eyes open and closed in the dark,” Fiziol. Cheloveka, 36, No. 3, 138–141 (2010).

    PubMed  Google Scholar 

  4. Danilova, N. N., “Functional states,” in: Psychophysiology: Textbook, Yu. A. Aleksandrov (ed.), Piter, St. Petersburg (2003), 2nd edition.

  5. De Fockert, J. W., Rees, G., and Frith, C. D., “The role of working memory in visual selective attention,” Science, 291, 1803–1806 (2001).

    Article  PubMed  Google Scholar 

  6. Dobkin, B. H., “Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation,” J. Physiol., 579, No. 3, 637–642 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dornhege, G., Millán, J.-R., Hinterberger, T., et al. (eds.), Toward Brain-Computer Interfacing, MIT Press, Cambridge, MA (2007).

  8. Dumenko, V. N., High-Frequency EEG Components and Operant Learning, Nauka, Moscow (2006).

    Google Scholar 

  9. Gao, L., Wang, J., and Chen, L., “Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy,” J. Neural England., 10, No. 3, 036023 (2013), DOI: 10.1088/1741-2560/10/3/036023.

    Article  Google Scholar 

  10. Hoffer, J. A., Stein, R. B., Haugland, M. K., et al., “Neural signals for command control and feedback in functional neuromuscular stimulation: a review,” J. Rehab. Res. Dev., 33, 145–157 (1996).

    CAS  Google Scholar 

  11. Ivanitskii, A. M., “Foci of interaction, information systems, and mental activity,” Zh. Vyssh. Nerv. Deyat., 43, No. 2, 219–228 (1993).

    CAS  Google Scholar 

  12. Khomskaya, E. D., “The asymmetry of brain blocks,” in: Neuropsychology Today, Moscow State University Press, Moscow (1995), pp. 14–37.

  13. Kiroi, V. N. and Aslanyan, E. V., “General features of the formation of the state of monotony,” Zh. Vyssh. Nerv. Deyat., 55, No. 6, 768–776 (2005).

    CAS  Google Scholar 

  14. Kiroi, V. N. and Belova, E. I., “Mechanisms of formation and role of oscillatory activity of neuronal populations in the systems activity of the brain,” Zh. Vyssh. Nerv. Deyat., 50, No. 2, 179–191 (2000).

    CAS  Google Scholar 

  15. Kiroi, V. N., Brain-Computer Interfaces, Southern Federal University, Rostov-on-Don (2011).

    Google Scholar 

  16. Kiroi, V. N., Vladimirskii, B. M., Aslanyan, E. V., et al., “Electrographic correlates of real and mental movements: spectral analysis,” Zh. Vyssh. Nerv. Deyat., 60, No. 5, 517–525 (2010).

    Google Scholar 

  17. Kiroy, V. N., Warsawskaya, L. V, and Voynov, V. B., “EEG after prolonged mental activity,” Int. J. Neurosci., 85, 31–43 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Kubota, M., Sakakihara, Y., Uchiyama, Y., et al., “New ocular movement detector system as a communication tool in ventilator-assisted Werdnig Hoffmann disease,” Dev. Med. Child. Neurol., 42, 61–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Luriya, A. Ya., Basic Neuropsychology, Akademiya, Moscow (2004).

  20. Medvedev, S. V., Pakhomov, S. V., Rudas, A. S., et al., “Selection of the state of calm waking as the reference state in psychological tests,” Fiziol. Cheloveka, 22, No. 1, 5–10 (1996).

    Google Scholar 

  21. Mikhailova, E. S., “Neurobiological basis of the Recognition of Emotions from Facial Expression by Humans,” Zh. Vyssh. Nerv. Deyat., 55, No. 2, 149–162 (2005).

    CAS  Google Scholar 

  22. Miller, K. J., Schalk, G., Fetz, E. E., et al., “Cortical activity during motor execution, motor imagery, and imagery-based online feedback,” Proc. Natl. Acad. Sci. USA. (2010), Doi: 10.1073/0913697107.

    Google Scholar 

  23. Mohamed, A. K., Marwala, T., and John, L. R., “Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 6289–6293 (2011), Doi: 10.1109/IEMBS.2011.6091552.

  24. Pfurtscheller, G. and Lopez da Silva, F. H., “Event-related EEG/MEG synchronization and desynchronization: basic principles,” EEG Clin. Neurophysiol., 110, No. 11, 1842–1857 (1999).

  25. Pfurtscheller, G. and Neuper C., “Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments,” Prog. Brain Res., 159, 433–437 (2006).

    Article  PubMed  Google Scholar 

  26. Pfurtscheller, G. and Neuper C., “Movement and ERD/ERS. The Bereitschaftspotential,” in: Movement-Related Cortical Potentials, M. Jahanshahi and M. Hallett (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 191–206.

    Google Scholar 

  27. Pfurtscheller, G., Neuper, C., Flotzinger, D., and Pregenzer, M., “EEGbased discrimination between imagination of right and left hand movement," EEG Clin. Neurophysiol., 103, 642–651 (1997).

    Article  CAS  Google Scholar 

  28. Pfurtscheller, G., Neuper, C., Guger, C., et al., “Current Trends in Graz Braincomputer Interface (BCI),” IEEE Trans. Rehab. Eng., 8, No. 2, 216–219 (2000).

    Article  CAS  Google Scholar 

  29. Pribram, K. H., “The far frontal cortex as executive processor: proprieties, priorities and practical inference,” in: Downward Processing in the Perception Representation Mechanisms, C. Taddei-Ferretti and K. Musio (eds.), World Sci., Singapore, New Jersey, London, Hong Kong (1998), pp. 546–587.

  30. Quandt, F., Reichert, C., Hinrichs, H., et al., “Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study,” Neuroimage, 59, No. 4, 3316–3324 (2012), Doi: 10.1016/j.neuroimage.2011.11.053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Raizada, R. D. S. and Poldrack, R. A., “Challenge-driven attention: Interacting frontal and brainstem systems,” Front. Hum. Neurosci. , 1, 3 (2008), online, Doi: 10.3389/neuro.09.003.2007 (2007).

  32. Rodriguez, M., Llanos, C., Gonzalez, S., and Sabate, M. “How similar are motor imagery and movement?” Behav. Neurosci., 122, No. 4, 910–916 (2008).

    Article  PubMed  Google Scholar 

  33. Simonov, P. V., Lectures on Brain Functions, Institute of Psychology Press, Moscow (1998).

    Google Scholar 

  34. Tallon-Baudry, C., Bertrand, O., Peronnet, E, and Pemier, J., “Induced gamma-band activity during the delay of the visual short-term memory task,” J. Neurosci., 18, No. 11, 4244–4254 (1998).

    CAS  PubMed  Google Scholar 

  35. Tan, D. S. and Nijholt, A (eds.), Brain-Computer Interface (Applying our Minds to Human-Computer Interaction), Springer-Verlag, London (2010), DOI 10.1007/978-1-84996-272-8 (2010).

  36. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., et al., “Brain-computer interfaces for communication and control,” Clin. Neurophysiol., 113, No. 6, 767–791 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kiroi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslanyan, E.V., Kiroi, V.N., Lazurenko, D.M. et al. EEG Spectral Characteristics During Voluntary Motor Activity. Neurosci Behav Physi 45, 1029–1037 (2015). https://doi.org/10.1007/s11055-015-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0182-9

Keywords

Navigation