Skip to main content
Log in

Consolidation, Reactivation, and Reconsolidation of Memory

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This preview presents data on the consolidation and reconsolidation of memories for negative and positive events via reactivation (reminding) obtained using different experimental models. Particular attention is paid to the time windows during which amnestic and other treatments during memory consolidation/reconsolidation are effective. Similarities and differences between memory consolidation on initial learning and repeated consolidation (reconsolidation) on reactivation by a conditioned stimulus and context are discussed. Hypothetical concepts are presented in relation to the possibility of renewing memory on reconsolidation and various pathways of influencing it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberini, C. M. and Chen, D. Y., “Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2,” Trends Neurosci., 35, No. 5, 274–283 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alberini, C. M., “The role of reconsolidation and the dynamic process of long-term memory formation and storage,” Front. Behav. Neurosci. , 5, 12 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alberini, C. M., Milekic, M. H., and Tronel, S., “Mechanisms of memory stabilization and destabilization,” Cell Mol. Life Sci., 63, No. 9, 999–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Almedidia, M. A. and Izquierdo, I., “Effect of intraperitoneal and intracerebroventricular administration of ACTH, epinephrine or betaendorphin on retrieval of an inhibitory avoidance task in rats,” Behav. Neural. Biol., 40, 119–122 (1984).

    Article  Google Scholar 

  5. Anokhin, K. V., Tiunova, A. A., and Rose, S. P., “Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks,” Eur. J. Neurosci., 15, No. 11, 1759–1765 (2002).

    Article  PubMed  Google Scholar 

  6. Antoine, B., Serge, L., and Jocelyne, C., “Comparative dynamics of MAPK/ERK signalling components and immediate early genes in the hippocampus and amygdala following contextual fear conditioning and retrieval,” Brain Struct. Funct. (2013).

  7. Bahar, A., Samuel, A., Hazvi, S., and Dudai, Y., “The amygdalar circuit that acquires taste aversion memory differs from the circuit that extinguishes it,” Eur. J. Neurosci., 17, No. 7, 1527–1530 (2003).

    Article  PubMed  Google Scholar 

  8. Biedenkapp, J. C. and Rudy J. W., “Context memories and reactivation: constraints on the reconsolidation hypothesis,” Behav. Neurosci., 118, 956–964 (2004).

    Article  PubMed  Google Scholar 

  9. Bontempi, B., Laurent-Demir, C., Destrade, C., and Jaffard, R., “Timedependent reorganization of brain circuitry underlying long-term memory storage,” Nature, 400, No. 6745, 671–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Bush, D. E. A., Caparosa, E. M., Gekker, A., and LeDoux, J. E., “Betaadrenergic receptors in the lateral nucleus of the amygdala contribute to the acquisition but not the consolidation of auditory fear conditioning,” Front. Behav. Neurosci. , 4, 1–7 (2010).

    Article  Google Scholar 

  11. Child, F. M., Epstein, H. T, Kuzirian, A. M., and Alkon, D. L., “Memory reconsolidation in Hermissenda,” Biol. Bull., 205, No. 2, 218–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Debiec, J. and LeDoux, J. E., “Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala,” Neuroscience, 129, No. 2, 267–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Debiec, J. and LeDoux, J. E., “Noradrenergic signaling in the amygdala contributes to the reconsolidation of fear memory: treatment implications for PTSD,” Ann. N.Y. Acad. Sci., 1071, 521–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Debiec, J., Bush, D. E., and LeDoux, J. E., “Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats – a possible mechanism for the persistence of traumatic memories in PTSD,” Depress. Anxiety, 28, No. 3, 186–193 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Debiec, J., Doyere, V., Nader, K., and LeDoux, J. E., “Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala,” Proc. Natl. Acad. Sci. USA., 103, No. 9, 3428–3433 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Debiec, J., LeDoux, J. E., and Nader K., “Cellular and systems reconsolidation in the hippocampus,” Neuron, 36, No. 3, 527–538 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Devauges, V. and Sara, S. J., “Memory retrieval enhancement by locus coeruleus stimulation: Evidence for mediation by beta receptors,” Behav. Brain Res., 43, 93–97 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Dudai, Y. and Eisenberg, M., “Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis,” Neuron, 44, No. 1, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dudai, Y., “The neurobiology of consolidations, or, how stable is the engram?” Annu. Rev. Psychol., 55, 51–86 (2004).

    Article  PubMed  Google Scholar 

  20. Duvarci, S., Nader, K, and LeDoux, J. E., “De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala,” Learn. Mem., 15, No. 10, 747–755 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  21. Everitt, B. J., Cardinal, R. N., Parkinson, J. A., and Robbins T. W., “Appetitive behavior: impact of amygdala- dependent mechanisms of emotional learning,” Ann. N.Y. Acad. Sci., 985, 233–250 (2003).

    Article  PubMed  Google Scholar 

  22. Flavell, C. R. and Lee, J. L., “Reconsolidation and extinction of an appetitive pavlovian memory,” Neurobiol. Learn. Mem., 104, 25–31 (2013).

    Article  PubMed  Google Scholar 

  23. Gainutdinova, T. H., Tagirova, R. R., Ismailova, A. I., Muranova, L. N., et al., “Reconsolidation of a context long-term memory in the terrestrial snail requires protein synthesis,” Learn. Mem., 12, No. 6, 620–625 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gainutdinova, T. Kh., Tagirova, R. R., Ismailova, A. I., Muranova, L. N., et al., “Protein synthesis-dependent reactivation of a contextual conditioned reflex in the common snail,” Zh. Vyssh. Nerv. Deyat., 54, No. 6, 795–800 (2004).

    Google Scholar 

  25. Gazarini, L., Stem, C. A., Carobrez, A. P., and Bertoglio, L. J., “Enhanced noradrenergic activity potentiates fear memory consolidation and reconsolidation by differentially recruiting α1- and β-adrenergic receptors,” Learn. Mem., 20, No. 4, 210–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Gisquet-Merrier, P. and Smith, C., “Avoidance performance in rat enhanced by postlearning paradoxical sleep deprivation,” Behav. Neural. Biol., 52, No. 2, 152–169 (1989).

    Article  Google Scholar 

  27. Hernandez, P. J. and Kelley, A. E., “Long-term memory for instrumental responses does not undergo protein synthesis-dependent reconsolidation upon retrieval,” Learn. Mem., 11, 748–754 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hernandez, P. J., Sadeghian, K., and Kelley, A. E., “Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens,” Nat. Neurosci., 5, No. 12, 1327–1331 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Izquierdo, I., “Endogenous state dependency: Memory depends on the relation between the neurohumoral and hormonal states present after training and at the time of testing,” in: Neurobiology of Learning and Memory, Lynch, G., McGaugh, J. L., and Weinberger N. (eds.) New York, Guilford (1984), pp. 333–350.

  30. Judge, M. E. and Quartermain, D., “Characteristics of retrograde amnesia following reactivation of memory in mice,” Physiol. Behav., 28, No. 4, 585–590 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Kida, S., Josselyn, S. A., Perla de Ortiz, S., et al., “CREB required for the stability of new and reactivated fear memories,” Nat. Neurosci., No. 4, 348–355 (2002).

  32. Kozyrev, S. A. and Nikitin, V. P., “Involvement of translation and transcription processes in the neurophysiological mechanisms of long-term memory reconsolidation,” Byull. Eksperim. Biol. Med., 154, No. 11, 535–539 (2012).

    Google Scholar 

  33. Kwapis, J. L., Jarome, T. J., Gilmartin, M. R., and Helmstetter, F. J., “Intraamygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts foreground context fear memory,” Neurobiol. Learn. Mem., 98, No. 2, 148–153 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kwapis, J. L., Jarome, T. J., Lonergan, M. E., and Helmstetter, F. J., “Protein kinase Mzeta maintains fear memory in the amygdala but not in the hippocampus,” Behav. Neurosci., 123, No. 4, 844–850 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lang, P. J., Davis, M., and Ohman, A., “Fear and anxiety: animal models and human cognitive psychophysiology,” J. Affect. Disord., 61, No. 3, 137–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Lattal, K. M. and Abel, T., “Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time,” Proc. Natl. Acad. Sci. USA., 101, No. 13, 4667–4672 (2004).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. LeDoux, J., “The amygdala,” Curr. Biol., 17, No. 20, 868–874 (2007).

    Article  Google Scholar 

  38. Lee, J. L. and Hynds, R. E., “Divergent cellular pathways of hippocampal memory consolidation and reconsolidation,” Hippocampus., 23, No. 3, 233–244 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lee, J. L., “Memory reconsolidation mediates the strengthening of memories by additional learning,” Nat. Neurosci., No. 11, 1264–1266 (2008).

  40. Lee, J. L., “Reconsolidation: maintaining memory relevance,” Trends Neurosci., 32, No. 8, 413–420 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lee, J. L., Everitt, B. J., and Thomas, K. L., “Independent cellular processes for hippocampal memory consolidation and reconsolidation,” Science , 4, 839–843 (2004).

    Article  CAS  Google Scholar 

  42. Lewis, D. J., “Psychobiology of active and inactive memory,” Psychol. Bull., 86, 1054–1083 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Lewis, D. J., Bregman, N. J., and Mahan, J. J., Jr., “Cue-dependent amnesia in rats,” J. Comp. Physiol. Psychol., 81, No. 2, 243–247 (1972).

    Article  CAS  PubMed  Google Scholar 

  44. Li, X. Y., Ko, H. G., Chen, T., Descalzi, G., et al., “Alleviating neuropathic pain hypersensitivity by inhibiting PKMz in the anterior cingulate cortex,” Science, 330, 1400–1404 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Litvin, O. O. and Anokhin, K. V., “Mechanisms of memory reorganization on extraction of acquired behavioral experience in chicks: effects of protein synthesis blockade in the brain,” Zh. Vyssh. Nerv. Deyat., 59, No. 4, 554–565 (1999).

    Google Scholar 

  46. Litvin, O. O. and Anokhin, K. V., “Mechanisms of memory reorganization during retrieval of acquired behavioral experience in chicks: the effects of protein synthesis inhibition in the brain.” Neurosci. Behav. Physiol., 30, No. 6, 671–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Lonergan, M. H., Olivera-Figueroa, L. A., Pitman R. K., and Brunet, A., “Pro pranolol’s effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis,” J. Psychiatry Neurosci., 38, No. 4, 222–231 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  48. Luft, A. R., Buitrago, M. M., Ringer, T., et al., “Motor skill learning depends on protein synthesis in motor cortex after training,” J. Neurosci., 24, No. 29, 6515–6520 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Mactutus, C. F., Smith R. L., and Riccio, D. C., “Extending the duration of ACTH-induced memory reactivation in an amnesic paradigm,” Physiol. Behav., 24, No. 3, 541–546 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. Maren, S., “Synaptic mechanisms of associative memory in the amygdala,” Neuron, 47, No. 6, 783–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. McGaugh, J. L., “Memory – a century of consolidation,” Science, 287, No. 5451, 248–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. McGaugh, J. L., “The amygdala modulates the consolidation of memories of emotionally arousing experiences,” Annu. Rev. Neurosci., 27, 1–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. McKenzie, S. and Eichenbaum, H., “Consolidation and reconsolidation: two lives of memories?” Neuron, 71, No. 2, 224–233 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Meiri, N. and Rosenblum, K., “Lateral ventricle injection of the protein synthesis inhibitor anisomycin impairs longterm memory in a spatial memory task,” Brain Res., 789, No. 1, 48–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Milekic, M. H., Pollonini, G., and Alberini, C. M., “Temporal requirement of C/EBPbeta in the amygdala following reactivation but not acquisition of inhibitory avoidance,” Learn. Mem., 14, No. 7, 504–511 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Misanin, J. R., Miller, R. R., and Lewis, D. J., “Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace,” Science, 160, No. 3827, 554–555 (1968).

    Article  CAS  PubMed  Google Scholar 

  57. Morris, R. G., Inglis, J., Ainge, J. A., et al., “Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval,” Neuron, 50, 479–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Murav’eva, E. V. and Anokhin, K. V., “Involvement of protein synthesis in in memory reconsolidation at different times after training to conditioned reflex freezing in mice,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 274–281 (2006).

    Google Scholar 

  59. Nader, K., Schafe, G. E., and LeDoux, J. E., “Fear memories requires protein synthesis in the amygdala for reconsolidation after retrieval,” Nature, 406, 722–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Nemeroff, C. B., Bremner, J. D., Foa, E. B., et al., “Posttraumatic stress disorder: a state-of-the-science review,” J. Psychiatr. Res., 40, No. 1, 1–21 (2006).

    Article  PubMed  Google Scholar 

  61. O’Donnell, T., Hegadoren, K. M., and Coupland, N. C., “Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder,” Neuropsychobiology, 50, No. 4, 273–283 (2004).

    Article  PubMed  Google Scholar 

  62. Parsons, R. G. and Davis, M., “Gone but not forgotten,” Front. Behav. Neurosci. , 5, 51 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  63. Pastalkova, E., Serrano, P., Pinkhasova, D., et al., “Storage of spatial information by the maintenance mechanism of LTP,” Science, 313, 1141–1144 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Pedreira, M. E., Perez-Cuesta, L. M., and Maldonado, H., “Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors,” J. Neurosci., 22, No. 18, 8305–8311 (2002).

    CAS  PubMed  Google Scholar 

  65. Philips, G. T., Ye, X., Kopec, A. M., and Carew, T. J., “MAPK establishes a molecular context that defines effective training patterns for longterm memory formation,” J. Neurosci., 33, No. 17,7565–7573 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Pitman, R. K., “Post-traumatic stress disorder, hormones, and memory,” Biol. Psychiatry, 26, No. 3, 221–223 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Pitman, R. K., Sanders, K. M., Zusman, R. M., et al., “Pilot study of secondary prevention of posttraumatic stress disorder with propranolol,” Biol. Psychiatry, 51, No. 2, 189–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Przybyslawski, J. and Sara, S. J., “Reconsolidation of memory after its reactivation,” Behav. Brain Res., 84, No. 1–2, 241–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Przybyslawski, J., Roullet, P., and Sara, S. J. “Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors,” J. Neurosci., 19, No. 15, 6623–6628 (1999).

    CAS  PubMed  Google Scholar 

  70. Rodriguez-Ortiz, C. J. and Bermudez-Rattoni, F., “Memory re-consolidation or updating consolidation?” in: Neural Plasticity and Memory: From Genes to Brain Imaging, Bermudez-Rattoni, F. (ed.), Taylor and Francis Group. New York (2007), pp. 209–224.

  71. Sacktor, T. C., “Memory maintenance by PKW – an evolutionary perspective,” Mol. Brain , 5, 31–43 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sandkühler, J. and Lee, I., “How to erase memory traces of pain and fear,” Trends Neurosci., 36, No. 6, 343–352 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Sangha, S., Scheibenstock, A., and Lukowiak, K., “Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1,” J. Neurosci., 23, No. 22, 8034–8040 (2003).

    CAS  PubMed  Google Scholar 

  74. Sara, S. and Devauges, V., “Idazoxan, an alpha2 antagonist, facilitates memory retrieval in the rat,” Behav. Neural Biol., 51, 401–411 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Sara, S. and Devauges, V., “Priming stimulation of locus coeruleus facilitates memory retrieval in the rat,” Brain Res., 438, 401–411 (1989).

    Google Scholar 

  76. Sara, S. J., “Noradrenergic modulation of selective attention: its role in memory retrieval,” Ann. N.Y. Acad. Sci., 444, 178–193 (1985).

    Article  CAS  PubMed  Google Scholar 

  77. Sara, S. J., DeWeer, B., and Hars, B., “Reticular stimulation facilitates retrieval of a ‘forgotten’ maze habit,” Neurosci. Lett., 18, No. 2, 211–217 (1980).

    Article  CAS  PubMed  Google Scholar 

  78. Sara, S. J., Roullet, P., and Przybyslawski, J. “Consolidation of memory for odor-reward association: beta-adrenergic receptor involvement in the late phase,” Learn. Mem., 6, No. 2, 88–96 (1999).

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Schafe, G. E., Doyere, V., and LeDoux, J. E., “Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage,” J. Neurosci., 25, No. 43, 10,010–10,014 (2005).

    Article  CAS  Google Scholar 

  80. Scoville, W. B. and Milner, B., “Loss of recent memory after bilateral hippocampal lesions,” J. Neurol. Neurosurg. Psychiatry, 20, No. 1, 11–21 (1957).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Sekeres, M. J., Mercaldo V., Richards B., et al., “Increasing CRTC 1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality,” J. Neurosci., 32, No. 49, 17,857–17,868 (2012).

    Article  CAS  Google Scholar 

  82. Serrano, P., Friedman, E. L., Kenney, J., et al., “PKMz maintains spatial, instrumental, and classically conditioned long-term memories,” PLoS Biol., 6, No. 12, 2698–2706 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Serrano, P., Yao, Y., and Sacktor, T. C., “Persistent phosphorylation by protein kinase M z maintains late-phase long-term potentiation,” J. Neurosci., 25, No. 8, 1979–1984 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Shevchenko, K. G., Danilova, A. B., and Grinkevich, L. N., “Post-translational modification of histone H3 on memory consolidation and reconsolidation in the mollusk Helix,” Vestn. Vavilovsk. Zh. Genet. Selekts., 13, No. 4, 723–729 (2009).

    Google Scholar 

  85. Sierra, R. O., Cassini, L. F., Santana, F., et al., “Reconsolidation may incorporate state-dependency into previously consolidated memories,” Learn. Mem., No. 7, 379–387 (2013).

  86. Sierra-Mercado, D., Padilla-Coreano, N., and Quirk, G. J., “Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear,” Neuropsychopharmacology, 36, No. 2, 529–538 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  87. Smith, C. N. and Squire, L. R., “Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory,” J. Neurosci., 29, No. 4, 930– 938 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Solntseva, S. V., Nikitin, V. P., Kozyrev, S. A., et al., “Actions of protein synthesis inhibitors during reactivation of an associative memory in the common snail elicits reversible and irreversible amnesia,” Ros. Fiziol. Zh., 92, No. 9, 1058–1068 (2006).

    CAS  Google Scholar 

  89. Southwick, S. M., Bremner J. D., Rasmusson, A., et al., “Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder,” Biol. Psychiatry, 46, No. 9, 1192–1204 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Southwick, S. M., Davis, M., Homer, B., et al., “Relationship of enhanced norepinephrine activity during memory consolidation to enhanced longterm memory in humans,” Am. J. Psychiatry, 159, No. 8, 1420–1422 (2002).

    Article  PubMed  Google Scholar 

  91. Strawn, J. R. and Geracioti, T. D., Jr., “Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder,” Depress. Anxiety., 25, No. 3, 260–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Takashima, A., Nieuwenhuis, I. L., Jensen, O., et al., “Shift from hippocampal to neocortical centered retrieval network with consolidation,” J. Neurosci., 29, No. 32, 10087–10093 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Taubenfeld, S. M., Milekic, M. H., Monti, B., and Alberini, C. M., “The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta,” Nat. Neurosci., 4, No. 8, 813–818 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Touzani, K, Puthanveettil, S. V, and Kandel, E. R., “Consolidation of learning strategies during spatial working memory task requires protein synthesis in the prefrontal cortex.” Proc. Natl. Acad. Sci. USA, 104, No. 13, 5632–5637 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Tronel, S. and Sara, S. J., “Mapping of olfactory memory circuits: region specific c-fos activation after odor-reward associative learning or after its retrieval,” Learn. Mem., 9, No. 3, 105–111 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Tronel, S., Milekic, M. H., and Alberini, C. M., “Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms,” PLoS Biol., 3, No. 9, 1630–1637 (2005).

    Article  CAS  Google Scholar 

  97. Volk, L. J., Bachman, J. L., Johnson, R., Yu, Y., and Huganir, R. L., “PKM-z is not required for hippo-campal synaptic plasticity, learning and memory,” Nature., 493, 420–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, Y., Zhang, T. Y., Xin, J., et al., “Differential involvement of brain-derived neurotrophic factor in reconsolidation and consolidation of conditioned taste aversion memory,” PLoS One, 7, No. 11, 1–11 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Grigor’yan.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 2, pp. 123–136, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’yan, G.A., Markevich, V.A. Consolidation, Reactivation, and Reconsolidation of Memory. Neurosci Behav Physi 45, 1019–1028 (2015). https://doi.org/10.1007/s11055-015-0181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0181-x

Keywords

Navigation