Skip to main content
Log in

Calbindin-Containing Neurons in the Ventral Horn of the Gray Matter of the Spinal Cord in Mice

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Experiments were performed on four C57black/6 mice to study neurons containing calbindin protein (CB) with a molecular weight of 28 kD and neurofi laments (NF) with a molecular weight of 200 kD in the ventral horn of the gray matter of spinal cord (SC) segments TII, LIV, LV, and LVI. Immunopositive neurons were detected by labeling with antibodies against CB and double labeling with antibodies against CB and NF. The whole cell population was labeled with NeuroTrace Red Fluorescent Nissl stain. The results of these studies showed that CB-immunopositive (CB+) neurons detected in the ventromedial area of the ventral horn at all levels of the SC were Renshaw cells. CB+ interneurons located in the medial part of the ventral horn were present only in the lumbar segments of the SC. CB+ motoneurons detected in the medial part of the ventral horn were present in one SC segment – LIV – and also contained NF protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Maslyukov, A. A. Korobkin, V. V. Konovalov, et al., “Agerelated development of calbindin-immunopositive neurons in rat sympathetic ganglia,” Morfologiya, 141, No. 1, 77–80 (2012).

    Google Scholar 

  2. V. V. Porseva, V. V. Shilkin, M. B. Korzina, et al., “Characteristics of developmental changes in NF200+ neurons in sensory ganglia at different segmental levels in chemical deafferentation,” Morfologiya, 142, No. 4, 37–42 (2012).

    CAS  Google Scholar 

  3. D. Eccles, “The antidromal inhibitory pathway,” in: Nerve Cell Physiology [Russian translation], Foreign Literature Press, Moscow (1959), pp. 182–191.

  4. F. J. Alvarez, D. E. Dewey, P. McMillin, and R. E. W. Fyffe, “Distribution of cholinergic contacts on Renshaw cells in the rat spinal cord: a light microscopic study,” J. Physiol., 515, No. 3, 787–797 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. F. J. Alvarez and R. E. W. Fyffe, “The continuing case for the Renshaw cells,” J. Physiol., 584, 31–45 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. R. Anelli and C. J. Heckman, “The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord,” J. Neurocytol., 34, No. 6, 369–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. U. Arvidsson, B. Ulfhake, S. Cullheim, et al., “Distribution of calbindin D28K-like immunoreactivity (LI) in the monkey ventral horn: do Purkinje cells contain calbindin D28k-LI?” J. Neurosci., 12, No. 3, 718–728 (1992).

    CAS  PubMed  Google Scholar 

  8. S. R. Blanchard, S. Al-Marsoummi, and P. A. Carr, “Renshaw cells loss in a transgenic mouse model of amyotrophic lateral sclerosis,” FASEB J., 23, 831 (2009).

    Google Scholar 

  9. C. P. Capano, R. Pernas-Alonso, and U. Porzio, “Neurofilament homeostasis and motoneurone degeneration,” BioEssays,, 23, 24–33 (2001).

    Article  CAS  Google Scholar 

  10. P. A. Carr, F. J. Alvarez, E. A. Leman, and R. E. Fyffe, “Calbindin D28k expression in immunohistochemically identifi ed Renshaw cells,” NeuroReport, 9, No. 11, 2657–2661 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. A. Fahandejsaadi, E. Leung, R. Rahaii, et al., “Calbindin-D28k, parvalbumin and calretinin in primate lower motor neurons,” NeuroReport, 15, No. 3, 443–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. E. J. Geiman, M. C. Knox, and F. J. Alvarez, “Postnatal maturation of gephyrin/glycine receptor clusters on developing Renshaw cells,” J. Comp. Neurol., 426, 130–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. J. S. Kim, J. M. Kim, J. A. Son, et al., “Decreased calbindin-immunoreactive Renshaw cells (RCs) in the lumbar spinal cord of the ataxic pogo mice,” Korean J. Anat., 41, No. 4, 255–263 (2008).

    Google Scholar 

  14. Q. Liu, F. Xie, S. L. Siedlak, et al., “Neurofilament proteins in neurodegenerative diseases,” Cell Mol. Life Sci., 61, 3057–3075 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. J. Meier, S. Couillard-Despres, H. Jacomy, et al., “Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice,” J. Neuropathol. Exp. Neurol., 58, 1099–1110 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. M. Megias, R. Alvarez-Otero, and M. Pombal, “Calbindin and calretinin immunoreactivities identify different types of neurons in the adult lamprey spinal cord,” J. Comp. Neurol., 455, No. 1, 72–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. R. Morona, J. M. Lopez, and A. Gonzalez, “Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase,” Brain Res. Bull., 69, No. 5, 519–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. R. Morona, J. M. Lopez, L. Dominguez, and A. Gonzalez, “Immunohistochemical and hodological characterization of calbindin-D28kcontaining neurons in the spinal cord of the turtle, Pseudemys scripta elegans,” Microsc. Res. Tech., 70, No. 2, 101–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. B. Renshaw, “Central effects of centripetal impulses in axons of spinal ventral roots,” J. Neurophysiol., 9, 191–204 (1946).

    CAS  PubMed  Google Scholar 

  20. B. Rexed, “The cytoarchitectonic organization of the spinal cord of the cat,” J. Comp. Neurol., 96, 415–495 (1952).

    Article  Google Scholar 

  21. H. Schmidt, “Three functional facets of calbindin D-28k,” Front. Mol. Neurosci., 5, 25 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. B. Schwaller, “The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells,” Biochem. Biophys. Acta 1820, 1294–1303 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. T. J. Steiner and L. M. Turner, “Cytoarchitecture of the rat spinal cord,” J. Physiol., 222, 123–125 (1972).

    Google Scholar 

  24. J. H. Zhang, Y. Morita, T. Hironaka, et al., “Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia,” J. Comp. Neurol., 302, 715–728 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Porseva or V. V. Shilkin.

Additional information

Translated from Morfologiya, Vol. 146, No. 4, pp. 21–25, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porseva, V.V., Shilkin, V.V., Strelkov, A.A. et al. Calbindin-Containing Neurons in the Ventral Horn of the Gray Matter of the Spinal Cord in Mice. Neurosci Behav Physi 45, 710–714 (2015). https://doi.org/10.1007/s11055-015-0133-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0133-5

Keywords

Navigation