Skip to main content
Log in

Post-Stroke Rehabilitation: Importance of Neuroplasticity and Sensorimotor Integration Processes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Questions of the neurorehabilitation of strokes patients are addressed. The importance of the phenomenon of neuroplasticity, which underlies recovery processes after brain lesions, is emphasized. Particular attention is paid to the question of sensorimotor integration in health and CNS pathology, as well as to the role of afferentation in the processes underlying the recovery of motor impairments. The principles of rehabilitation therapy for stroke patients are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. S. Vilenskii, Stroke, Med. Inform. Agent., St. Petersburg (1995).

  2. E. S. Lawrence, C. Coshall, R. Dundas, et al., “Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population,” Stroke, 32, 1279–1284 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. E. I. Gusev, V. I. Skvortsova, and V. V. Krylov, “Decreases in lethality and disability due to vascular brain diseases in the Russian Federation,” Proc. 80th Session of the Council of the Russian Academy of Medical Sciences, Moscow (2007).

  4. I. V. Damulin and E. V. Kononenko, “Statolocomotor impairments in patients with hemisphere stroke,” Klin. Gerontol., 13, No. 8, 42–49 (2007).

    Google Scholar 

  5. L. V. Gauthier, F. Taub, C. Perkins, et al., “Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke,” Stroke, 39, 1520–1525 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  6. R. Zorowitz and M. Brainin, “Advances in brain recovery and rehabilitation,” Stroke, 42, No. 2, 294–297 (2011).

    Article  PubMed  Google Scholar 

  7. A. S. Kadykov, L. A. Chernikova, and N. V. Shakhporonova, The Rehabilitation of Neurological Patients, MEDpress Inform, Moscow (2008).

    Google Scholar 

  8. I. V. Damulin, “The basic mechanisms of neuroplasticity and their clinical significance,” Zh. Nevrol. Psikhiat., 109, No. 4, 4–8 (2009).

    CAS  Google Scholar 

  9. D. B. Popovich, M. B. Popovich, and T. Sinkjaer, “Neurorehabilitation of upper extremities in humans with sensory-motor impairment,” Neuromodulation, 5, No. 1, 54–67 (2002).

    Article  Google Scholar 

  10. J. C. Baron, L. G. Cohen, S. C. Cramer, et al., “Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke Recovery,” Cerebrovasc. Dis., 18, 260–267 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  11. P. M. Rossini and G. Dal Forno, “Integrated technology for evaluation of brain function and neural plasticity,” Phys. Med. Rehabil. Clin. N. Am., 15, 263–306 (2004).

    Article  PubMed  Google Scholar 

  12. N. S. Ward, “Future perspectives in functional neuroimaging in stroke recovery,” Eur. Medicophys., 43, 285–294 (2007).

    CAS  Google Scholar 

  13. C. Calautti, F. Leroy, J. Y. Guincestre, and J. C. Baron, “Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation,” Neuroimage, 19, 1650–1654 (2003).

    Article  PubMed  Google Scholar 

  14. R. Chen, L. G. Cohen, and M. Hallett, “Nervous system reorganization following injury,” Neuroscience, 11, 761–773 (2002).

    Article  Google Scholar 

  15. F. V. Takhavieva, Impairment to Motor Functions in Cerebral Stroke: Rehabilitation and Prognosis: Auth. Abstr. Dissert. Doct. Med. Sci., Moscow (2004).

  16. C. M. Butefisch, R. Kleiser, R. Korber, et al., “Recruitment of contralesional motor cortex in stroke patients with recovery of hand function,” Neurology, 64, 1067–1069 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. L. M. Carey, D. F. Abbot, G. F. Egan, et al., “Evolution of brain activation with good and poor motor recovery after stroke,” Neurorehabil. Neural Repair, 20, 24–41 (2006).

    Article  PubMed  Google Scholar 

  18. N. S. Ward and R. S. Frakowiak, “The functional anatomy of cerebral reorganization after focal brain injury,” J. Physiol. (Paris), 99, 425–436 (2006).

    Article  Google Scholar 

  19. X. Q. Wang, M. M. Merzenich, K. Sameshima, et al., “Remodeling of hand representation in adult cortex determined by timing of tactile stimulation,” Nature, 378, 71–75 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. C. Plewnia, M. Lotze, and C. Gerloff, “Disinhibition of the contralateral motor cortex by low-frequency rTMS,” Neuroreport, 14, 609–612 (2003).

    Article  PubMed  Google Scholar 

  21. C. Gerloff, K. Bushara, A. Sailer, et al., “Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke,” Brain, 129, 791–808 (2006).

    Article  PubMed  Google Scholar 

  22. M. Lotze, W. Beutling, M. Loibl, et al., “Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients,” Neurorehabil. Neural Repair, 20, No. 10, 1–10 (2011).

    Google Scholar 

  23. P. M. Rossini, C. Altamura, F. Ferreri, et al., “Neuroimaging experimental studies on brain plasticity in recovery from stroke,” Eur. Medicophys., 43, 241–2454 (2007).

    CAS  Google Scholar 

  24. S. C. Cramer, C. I. Moore, S. P. Finklestein, and B. R. Rosen, “A pilot study of somatotopic mapping after cortical infarct,” Stroke, 31, 668–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. B. B. Johansson, “Brain plasticity in health and disease,” Keio J. Med., 53, No. 4, 231–246 (2004).

    Article  PubMed  Google Scholar 

  26. J. M. Newton, N. S. Ward, G. J. Parker, et al., “Non-invasive mapping of corticofugal fibers from multiple motor areas – relevance to stroke recovery,” Brain, 129, 1844–1858 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  27. A. J. Suminski, D. C. Tkach, A. H. Fagg, et al., “Incorporating feedback from multiple sensory modalities enhances brain-machine interface control,” J. Neurosci., 30, No. 50, 16,777–16,787 (2010).

    Article  CAS  Google Scholar 

  28. E. Tecchio, E. Zappasodi, J. M. Melgari, et al., “Sensory-motor interaction in primary hand cortical areas: a magnetoencephalography assessment,” 141, No. 1, 533–542 (2006).

  29. P. K. Anokhin, Key Questions in Functional Systems Theory, Moscow (1980).

  30. D. V. Galanov, Dynamics of Motor Impairments in Patients with Ischemic Stroke in the Early Recovery Period in Non-Medication-Based Restorative Treatment: Auth. Abstr. Dissert. Cand. Med. Sci., Moscow (2011).

  31. I. V. Damulin, “Post-stroke motor impairments,” Consilium Medicum, 5, No. 2, 64–70 (2003).

    Google Scholar 

  32. L. A. Connell, “Somatosensory impairment after stroke: frequency of different deficits and their recovery,” Clin. Rehabil., 22, No. 8, 758–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. A. Floel and A. G. Cohen, “Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke,” Neurobiol. Dis., 37, No. 2, 243–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. J. Liepert, C. Restemeyer, T. Kucinski, et al., “Motor strokes: the lesion location determines motor excitability changes,” Stroke, 36, No. 12, 2648–2653 (2005).

    Article  PubMed  Google Scholar 

  35. C. Takahashi, L. Der-Yeghiaian, V. Le, et al., “Robot-based hand motor therapy after stroke,” Stroke, 131, 425–437 (2008).

    Google Scholar 

  36. S. H. Jang, Y. H. Kim, S. H. Cho, “Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients,” Neuroreport, 14, 137–141 (2003).

    Article  PubMed  Google Scholar 

  37. R. S. Marshall, G. M. Perera, R. M. Lazar, et al., “Evolution of cortical activation during recovery from corticospinal tract infarction,” Stroke, 31, 656–661 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. L. V. Galanov, N. B. Kozlovskaya, A. B. Gekht, et al., “Use of therapeutic costumes for axial loading in neurorehabilitation,” Zh. Nevrol. Psikhiat., 110, No. 8, 55–59 (2010).

    CAS  Google Scholar 

  39. I. B. Kozlovskaya, I. V. Sayenko, D. G. Sayenko, et al., “Role of support afferentation in control of the tonic muscle activity,” Acta Astronaut., 8, 285–294 (2007).

    Article  Google Scholar 

  40. I. A. Matveeva, K. A. Petrushanskaya, K. A. Semenova, et al., “Use of support stimulation for rehabilitation of motor functions in children with different types of cerebral palsy,” Proc. All-Russ. Conf. with Int. Particip. Functional Interhemisphere Asymmetry and Brain Plasticity, Moscow (2012), pp. 324–327.

  41. D. R. Khusnutdinova, The Role of Support Afferentation in Maintaining the Rate-Force Properties and Stamina of the Antigravitation Muscles: Auth. Abstr. Dissert. Cand. Med. Sci., Moscow (2007).

  42. E. I. Kremneva, L. A. Chernikova, R. N. Konovalov, et al., “Assessment of the supraspinal control of locomotion in health and pathology using a passive motor fMRI paradigm,” Ann. Klin. Eksper. Nevrol., 6, No. 1, 31–37 (2012).

    Google Scholar 

  43. S. B. Shvarkov, Z. M. Titova, O. S. Mizieva, et al., “The use of complex proprioception correction methods with restoration of motor functions in stroke patients,” Klin. Prak., No. 3, 3–8 (2011).

  44. F. Hummel, P. Celnik, P. Giraux, et al., “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain, 128, 490–499 (2005).

    Article  PubMed  Google Scholar 

  45. A. C. Lo, P. D. Guarino, L. G. Richards, et al., “Robot-assisted therapy for long-term upper-limb impairment after stroke,” N. Eng. J. Med., 362, 1772–1783 (2010).

    Article  CAS  Google Scholar 

  46. H. P. Mattle and S. I. Savitz, “Advances in emerging therapies,” Stroke, 42, No. 2, 298–300 (2011).

    Article  PubMed  Google Scholar 

  47. J. D. Riley, V. Le, and L. Der-Yeghiaian, “Anatomy of stroke injury predicts gains from them,” Stroke, 42, No. 2, 421–426 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  48. T. Shimizu, A. Hosaki, T. Hino, et al., “Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke,” Brain, 125, 1896–1907 (2002).

    Article  PubMed  Google Scholar 

  49. I. Tarkka, M. Kononen, M. Husso-Saastamoinen, et al., “Cerebral perfusion changes detected in motor areas after constraint-induced movement therapy,” Neurol. Rehabil., No. 4, 16–19 (2004).

  50. V. D. Daminov, “Robotic locomotor therapy in neurorehabilitation,” Vestn. Vosstan. Med., No. 1, 57–62 (2012).

  51. Q. Jiang, Z. G. Zhang, and M. Chopp, “MRI evaluation of white matter recovery after brain injury,” Stroke, 41, 112–113 (2010).

    Article  Google Scholar 

  52. P. M. Matthews, G. D. Honey, and E. T. Bullmore, “Application of fMRI in translational medicine and clinical practice,” Nat. Rev. Neurosci., 7, 732–744 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. L. A. Dobrynina, “Potentials for functional and structural neuroimaging in studies of the restoration of motor functions after ischemic stroke,” Ann. Nevrol., 5, No. 3, 53–61 (2011).

    Google Scholar 

  54. J. Lee, M.-K. Han, S. Kim, et al., “Fiber tracking by diffusion tensor imaging in corticospinal tract stroke: Topographical correlation with clinical symptoms,” Neuroimage, 26, 771–776 (2005).

    Article  PubMed  Google Scholar 

  55. J. Konishi, K. Yamada, O. Kizu, et al., “MR tractography for the evaluation of functional recovery from lenticulostriate infarcts,” Neurology, 64, 108–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. K. Crafton, A. Mark, and S. Cramer, “Improved understanding of cortical injury by incorporating measures of functional anatomy,” Brain, 126, 1650–1659 (2003).

    Article  PubMed  Google Scholar 

  57. C. M. Stinear, P. A. Barber, P. R. Smale, et al., “Functional potential in chronic stroke patients depends on corticospinal tract integrity,” Brain, 130, 170–180 (2007).

    Article  PubMed  Google Scholar 

  58. S. S. Nikitin and A. L. Kurenkov, Magnetic Stimulation in the Diagnosis and Treatment of Nervous System Diseases: Handbook for Doctors, SAShKO (2003).

  59. P. Talelli and J. Rothwell, “Does brain stimulation after stroke have a future?” Curr. Opin. Neurol., 19, 543–550 (2006).

    Article  PubMed  Google Scholar 

  60. N. Kobayashi, J. Ng, H. Theoret, et al., “Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation,” Exp. Brain Res., 149, 1–8 (2003).

    PubMed  Google Scholar 

  61. M. A. Nitsche, A. Schauenburg, N. Lang, et al., “Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human,” J. Cogn. Neurosci., 15,619–626 (2003).

    Article  PubMed  Google Scholar 

  62. R. Lindenberg, V. Renga, and L. L. Zhu, et al., “Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients,” Neurology, 75, 1–9 (2010).

    Article  Google Scholar 

  63. L. Sawaki, A. J. Butler, L. Xiaoyan, et al., “Constraint-induced movement therapy results in increased motor map area in subjects 3 and 9 months after stroke,” Stroke, 22, 505–513 (2008).

    Google Scholar 

  64. M. H. Boudrias, R. L. McPherson, S. B. Front, et al., “Output properties and organization of the forelimb representation of motor areas on the lateral aspect of the hemisphere in rhesus macaques,” Cereb. Cortex, 20, 169–186 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  65. A. Feydy, R. Carlier, A. Roby-Brami, et al., “Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation,” Stroke, 33, 1610–1617 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Damulin.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 113, No. 12, Iss. II, Stroke, pp. 35–41, December, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekusheva, E.V., Damulin, I.V. Post-Stroke Rehabilitation: Importance of Neuroplasticity and Sensorimotor Integration Processes. Neurosci Behav Physi 45, 594–599 (2015). https://doi.org/10.1007/s11055-015-0117-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0117-5

Keywords

Navigation