Involvement of Anomalous Apoptosis in Impairments to Synaptic Plasticity in Post-Traumatic Stress Disorder

Enzyme-linked immunosorbent assay was used to measure levels of apoptosis and synaptic plasticity marker proteins, i.e., annexin A5 and complexin 2 respectively, as well as the proinflammatory cytokine tumor necrosis factor α (TNF-α), in serum from patients with post-traumatic stress disorder (PTSD) in comparison with healthy subjects. Correlations between these parameters were studied. The results obtained here showed that annexin A5 and complexin 2 concentrations in PTSD patients were significantly lower than normal, while TNF-α levels were higher. PTSD patients showed a positive correlation between annexin A5 and complexin 2 levels on the one hand, and a negative correlation between annexin A5 and TNF-α levels on the other. These data lead to the conclusion that the pathogenesis of PTSD is characterized by reduced apoptosis associated with defects in synaptic plasticity. It is suggested that anomalous apoptosis may also be among the factors supporting the development of the chronic inflammation typical of the pathogenesis of PTSD.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. A. Gomazkov, “Apoptosis of neuronal structures and the role of neurotrophic growth factors. Biochemical mechanisms of the efficacy of brain-derived peptide agents,” Zh. Nevrol. Psikhiat., Suppl. Stroke, No. 7, 17–22 (2002).

    Google Scholar 

  2. 2.

    L. P. Oganesyan, G. M. Mkrtchyan, S. G. Sukiasyan, and A. S. Boyadzhyan, “Classical and alternative complement cascades in posttraumatic stress disorder,” Byull. Eksperim. Biol. Med., 147, No. 12, 618–621 (2009).

    Google Scholar 

  3. 3.

    L. P. Oganesyan, G. M. Mkrtchyan, A. S. Boyadzhyan, et al., “Inflammation markers in post-traumatic stress disorder,” Tsitokin. Vospal., No. 11, 1 (2012).

  4. 4.

    N. N. Petrishchev, L. V. Vasina, and A. V. Lugovaya, “Blood levels of soluble apoptosis markers and circulating annexin V-binding apoptotic cells in patients with acute coronary syndrome,” Vestn. St. Peterb. Univers., 11, No. 1, 14–23 (2008).

    Google Scholar 

  5. 5.

    V. V. Semchenko, S. S. Stepanov, and N. N. Bogolepov, Synaptic Plasticity of the Brain (basic and applied aspects), Omsk Regional Typography, Omsk (2008).

    Google Scholar 

  6. 6.

    M. Begemann, S. Grube, S. Papiol, et al., “Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms,” Arch. Gen. Psychiatry, 67, No. 9, 879–888 (2010).

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    D. D. Blake, F. W. Weathers, L. M. Nagy, et al., “The development of a clinician administered PTSD scale,” J. Trauma Stress, 8, No. 1, 75–90 (1995).

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    H. H. Boersma, B. L. Kitselaer, L. M. Stolk, et al., “Past, present and future of Annexin A5: from protein discovery to clinical applications,” J. Nucl. Med., 46, No. 12, 2035–2050 (2005).

    PubMed  CAS  Google Scholar 

  9. 9.

    N. Brose, “Altered complexin expression in psychiatric and neurological disorders: cause or consequence?” Mol. Cells., 25, No. 1, 7–19 (2008).

    PubMed  CAS  Google Scholar 

  10. 10.

    J. J. Chae, H. D. Komarow, J. Cheng, et al., “Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis,” Mol. Cell., 11, No. 3, 591–604 (2003).

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    S. L. Chan and M. P. Mattson, “Caspase and calpain substrates: roles in synaptic plasticity and cell death,” J. Neurosci. Res., 58, 167–190 (1999).

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    C. S. De Kloet, E. Vermetten, A. Bikker, et al., “Leukocyte glucocorticoid receptor expression and immunoregulation with and without post-traumatic stress disorder,” Mol. Psychiatry, 12, No. 5,443–453 (2007).

    PubMed  Google Scholar 

  13. 13.

    Diagnostic and Statistical Manual of Mental Disorders, 4th edition, revised text, American Psychiatric Association, Washington DC (2000).

  14. 14.

    N. A. DiProspero, E. Y. Chen, V. Charles, et al., “Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements,” J. Neurocytol., 33, No. 5, 517–533 (2004).

    PubMed  Article  Google Scholar 

  15. 15.

    R. S. Duman, “Pathophysiology of depression: the concept of synaptic plasticity,” Eur. Psychiatry, 17, No. 3, 306–310 (2001).

    Google Scholar 

  16. 16.

    M. B. First, R. L. Spitzer, M. Gibbon, and J. B. Williams, Structured Clinical Interview for the DSM-IV Axis I Disorders, American Psychiatric Press Inc., Washington DC (1996).

    Google Scholar 

  17. 17.

    H. D. Flad, E. Grage-Griebenow, F. Peterson, et al., “The role of cytokines in monocyte apoptosis,” Pathobiology, 67, No. 5–6, 291–293 (1999).

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    L. P. Francesconi, K. M. Ceresér, R. Mascarenhas, et al., “Increased annexin-V and decreased TNF-〈 serum levels in chronic-medicated patients with schizophrenia,” Neurosci. Lett., 502, No. 3, 143–146 (2011).

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    W. Freeman and A. J. Morton, “Regional and progressive changes in brain expression of complexin II in a mouse transgenic for the Huntington’s disease mutation,” Brain Res. Bull., 63, No. 1, 45–55 (2004).

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    J. M. Gill, L. Saligan, S. Woods, and G. Page, “PTSD is associated with an excess of inflammatory immune activities,” Perspect. Psychiatr. Care, 45, No. 4, 262–277 (2009).

    PubMed  Article  Google Scholar 

  21. 21.

    C. P. Gilman and M. P. Mattson, “Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility?” Neuromolec. Med., 2, No. 2, 197–214 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    D. Glynn, K. Reim, N. Brose, and A. J. Morton, “Depletion of complexin II does not affect disease progression in a mouse model of Huntington’s disease (HAD); support for role for complexin II in behavioural pathology in a mouse model of HAD,” Brain Res. Bull., 72, No. 2–3, 108–120 (2007).

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    L. G. Grunnet, R. Aikin, M. F. Tonnesen, et al., “Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells,” Diabetes, 58, No. 8, 1807–1815 (2009).

    PubMed Central  PubMed  CAS  Article  Google Scholar 

  24. 24.

    C. Haanen and I. Vermes, “Apoptosis and inflammation,” Mediators Inflamm., 4, No. 1, 5–15 (1995).

    PubMed Central  PubMed  CAS  Article  Google Scholar 

  25. 25.

    J. Hart, T. Kimbrell, P. Fauver, et al., “Cognitive dysfunctions associated with PTSD: evidence from World War II prisoners of war,” J. Neuropsych. Clin. Neurosci., 20, 309–316 (2008).

    Article  Google Scholar 

  26. 26.

    E. A. Hoge, K. Brandstetter, S. Moshier, et al., “Broad spectrum of cytokine abnormalities in panic disorder and post-traumatic stress disorder,” Depress. Anxiety, 26, No. 5, 447–455 (2009).

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    M. Holcik, Apoptosis in Health and Disease: Clinical and Therapeutic Aspects, Cambridge University Press, UK (2005).

    Google Scholar 

  28. 28.

    G. Z. Huang, H. Ujihara, S. Takahashi, et al., “Involvement of complexin II in synaptic plasticity in the CA1 region of the hippocampus: the use of complexin II-lacking mice,” J. Pharmacol. (Jpn), 84, No. 2, 179–187 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    G. B. Kaplan, J. J. Vasterling, and P. C. Vedak, “Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: role in pathogenesis and treatment,” Behav. Pharmacol., 21, No. 5–6, 427–437 (2010).

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Z. Li and M. Sheng, “Caspases in synaptic plasticity,” Mol. Brain, 14, No. 5, 15 (2012).

    Article  Google Scholar 

  31. 31.

    A. L. Mahan and K. J. Ressler, “Fear conditioning, synaptic plasticity and the amygdala: implications for post-traumatic stress disorder,” Trends Neurosci., 35, No. 1, 24–36 (2012).

    PubMed Central  PubMed  CAS  Article  Google Scholar 

  32. 32.

    M. P. Mattson and W. Duan, “‘Apoptotic’ biochemical cascades in synaptic compartments: Roles in adaptive plasticity and neurodegenerative disorders,” J. Neurosci. Res., 58, 152–166 (1999).

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    M. Miura, H. Zhu, R. Rotello, et al., “Induction of apoptosis in fibroblasts by IL-1-converting enzyme, mammalian homolog of the C. elegans cell death gene ced-3,” Cell, 75, 653–660 (1993).

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    S. A. Moore, “Cognitive abnormalities in post-traumatic stress disorder,” Curr. Opin. Psychiatry, 22, No. 1, 19–24 (2009).

    PubMed  Article  Google Scholar 

  35. 35.

    L. E. Munoz, B. Frey, F. Pausch, et al., “Role of annexin A5 in modulation of the immune response against dying and dead cells,” Curr. Med. Chem., 14, No. 3, 271–277 (2007).

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    C. Nucci, S. Piccirilli, R. Nisticò, et al., “Apoptosis in the mechanisms of neuronal plasticity in the developing visual system,” Neuromolecular Med., 2, No. 2, 197–214 (2002).

    Article  Google Scholar 

  37. 37.

    C. P. M. Reutelingsperger and W. I. Van Heerde, “Annexin V. The regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis,” Cell Mol. Life Sci., 53, 527–532 (1997).

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    J. Savill, “Apoptosis in resolution of inflammation,” J. Leukocyte Biol., 61, 375–380 (1997).

    PubMed  CAS  Google Scholar 

  39. 39.

    A. J. Silva, “Molecular and cellular cognitive studies of the role of synaptic plasticity in memory,” J. Neurobiol., 54, No. 1, 224–237 (2003).

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    N. Sing, “Apoptosis in health and disease and modulation of apoptosis for therapy: an overview,” Indian J. Clin. Biochem., 22, No. 2, 6–16 (2007).

    Article  Google Scholar 

  41. 41.

    M. Sugano, K. Tsuchida, and N. Makino, “Effects of soluble TNFalpha receptor 1 on apoptosis induced by oxidized LDL in endothelial cells,” Mol. Cell. Biochem., 258, 57–63 (2004).

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    M. A. Swairjo, N. O. Concha, M. A. Kaetzel, et al., “Ca(2+)-bridging mechanism and phospholipid group recognition in the membranebinding protein annexin V,” Nat. Struct. Biol., No. 2,968–974 (1995).

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    K. Takayima, “Molecular mechanisms of synaptic plasticity underlying learning and memory,” Seikagaku, 83, No. 11, 1016–1026 (2011).

    Google Scholar 

  44. 44.

    Y. Takeda, H. Watanabe, S. Yonehara, et al., “Rapid acceleration of neutrophil apoptosis by tumor necrosis factor-alpha,” Int. Immunol., 5, 691–694 (1993).

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    R. K. Tannenberg, H. L. Scott, A. E. Tannenberg, and P. R. Dodd, “Selective loss of synaptic proteins in Alzheimer’s disease: evidence for an increased severity with APOE varepsilon4,” Neurochem. Int., 49, No. 7, 631–639 (2006).

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    D. M. Vanags, S. Coppola, and D. H. Burgess, “Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis,” Biol. Chem., 271, 31075–31031 (1996).

    CAS  Article  Google Scholar 

  47. 47.

    I. Vermes, E. N. Steur, C. Ratelingsperger, and C. Haanen, “Decreased concentration of annexin V in parkinsonian cerebrospinal fluid: speculation on the underlying cause,” Mov. Disord., 14, No. 6, 1008–1010 (1999).

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    R. von Känel, B. Kraemer, R. Traber, et al., “Evidence for low-grade systemic proinflammatory activity in patients with post-traumatic stress disorder,” J. Psychiatr. Res., 41, No. 9, 744–752 (2007).

    Article  Google Scholar 

  49. 49.

    S. R. Wiley, K. Schooley, P. J. Smolak, et al., “Identification and characterization of a new member of the TNF family that induces apoptosis,” Immunity, 3, No. 6, 673–682 (1995).

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    M. Yamaguchi,Y. Kokai, S. Imai, et al., “Investigation of annexin A5 as a biomarker for Alzheimer’s disease using neuronal cell culture and mouse model,” J. Neurosci. Res., 88, No. 12, 2682–2692 (2010).

    PubMed  CAS  Google Scholar 

  51. 51.

    Y. Yamauchi, L. H. Qin, M. Nishihara, et al., “Vulnerability of synaptic plasticity in the complexin II knockout mouse to maternal deprivation stress,” Brain Res., 1056, No. 1, 59–67 (2005).

    PubMed  CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Boyadzhyan.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 113, No. 1, Iss. I, pp. 26–29, January, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mkrtchyan, G.M., Boyadzhyan, A.S., Avetyan, D.G. et al. Involvement of Anomalous Apoptosis in Impairments to Synaptic Plasticity in Post-Traumatic Stress Disorder. Neurosci Behav Physi 44, 442–446 (2014).

Download citation


  • apoptosis
  • annexin A5
  • complexin 2
  • tumor necrosis factor α
  • synaptic plasticity
  • post-traumatic stress disorder