Skip to main content

The Role of Glycogen Synthase Kinase 3 in the Mechanisms of Learning and Memory

This review covers published data on the role of GSK-3 in the mechanisms of learning and memory. The regulation of GSK-3 by phosphorylation of serine and tyrosine residues and via the Wnt signal pathway by means of disruption of axin-β-catenin complexes is described. Data on the involvement of GSK-3b in controlled NMDA-dependent long-term depression and long-term potentiation are discussed, as are the possible mechanisms of action of the enzyme via activation of NMDA receptors and AMPA endocytosis. The role of GSK-3b in the development of Alzheimer’s disease via inhibition of the Wnt signal pathway by beta-amyloid is addressed, as are the resultant increases in GSK-3b activity and subsequent hyperphosphorylation of tau and formation of neurofibrillary complexes. The behavior of animals with knockout and overexpression of the GSK-3b genes and the influences of GSK-3b inhibitors in different behavioral models are assessed.

This is a preview of subscription content, access via your institution.

References

  1. H. Aberle, A. Bauer, J. Stappert, et al., “Beta-catenin is a target for the ubiquitin-proteasome pathway,” EMBO J., 16, 3797–3804 (1997).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. G. Ahmadian, W. Ju, L. Liu, et al., “Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD,” EMBO J., 23, 1040–1050 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. A. Ali, K. P. Hoeflich, and J. R. Woodgett, “Glycogen synthase kinase-3: properties, functions, and regulation,” Chem. Rev., 101, 2527–2540 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. S. Amit, A. Hatzubai, Y. Birman, et al., “Axin-mediated CKI phosphorylation of beta-catenin at Ser45: a molecular switch for the Wnt pathway,” Genes Dev., 16, 1066–1076 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. J. M. Beaulieu, T. D. Sotnikova, W. D. Yao, et al., “Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase-3 signaling cascade,” Proc. Natl. Acad. Sci. USA, 101, 5099–5014 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. J. M. Beaulieu, X. Zhang, R. M. Rodriguez, et al., “Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency,” Proc. Natl. Acad. Sci. USA, 105, 1333–1338 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Y. Bersudsky, A. Shaldubina, N. Kozlovsky, et al., “Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results,” Behav. Pharmacol., 19, 217–224 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. G. N. Bijur and R. S. Jope, “Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria,” Neuroreport, 14, 2415–2419 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. T. V. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, 361, 31–39 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. M. A. Bonaguidi, C. Y. Peng, T. McGuire, et al., “Noggin expands neural stem cells in the adult hippocampus,” J. Neurosci., 28, No. 37, 9194–9204,” (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. H. Braak and E. Braak, “Neuropathological stageing of Alzheimer’s-related changes,” Acta Neuropathol., 82, No. 4, 239–259 (2001).

    Article  Google Scholar 

  12. C. A. Bradley, S. Peineau, C. Taghibiglou, et al., “A pivotal role of GSK-3 in synaptic plasticity,” Front Mol. Neurosci., No. 5, 5–13 (2012).

  13. K. M. Cadigan and Y. I. Liu, “Wnt signaling: complexity at the surface,” J. Cell Sci., 119, No. 3, 395–402 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. P. M. Chan, L. Lim, and E. Manser, “PAK is regulated by PI3K, PIX, CDC42, and PP2Calpha and mediates focal adhesion turnover in the hyperosmotic stress-induced p38 pathway,” J. Biol. Chem., 283, No. 36, 24,949–24,961 (2008).

    Article  CAS  Google Scholar 

  15. H. J. Chung, J. P. Steinberg, R. J. Huganir, and D. J. Linden, “Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression,” Science, 300, 1751–1755 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. G. L. Collingridge, S. Peineau, J. G. Howland, and Y. T. Wang, “Long-term depression in the CNS,” Nat. Rev. Neurosci., 11, 459–0473 (2010).

    Article  PubMed  CAS  Google Scholar 

  17. G. V. De Farrari, A. Papassotiropoulos, T. Biechele, et al., “Common genetic variation within the low-density lipoprotein receptor-related Protein 6 and late-onset Alzheimer’s disease,” Proc. Natl. Acad. Sci. USA, 104, 9434–9439 (2007).

    Article  Google Scholar 

  18. M. Delcommenne, C. Tan, V. Gray, et al., “Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase and protein kinase B/AKT by the integrin-linked kinase,” Proc. Natl. Acad. Sci. USA, 95, 11,211–11,216 (1998).

    Article  CAS  Google Scholar 

  19. I. Dominguez K. Itoh, and S. Y. Sokol, “Role of glycogen synthase kinase-3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos,” Proc. Natl. Acad. Sci. USA, 92, 8498–8502 (1995).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. J. Du, Y. Weei, L. Liu, et al., “A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors,” Proc. Natl. Acad. Sci. USA, 107, 11,573–11,578 (2010).

    Article  CAS  Google Scholar 

  21. N. Embi, D. B. Rylett, and P. Cohen, “Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase,” Eur. J. Biochem., 107, 519–527 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. T. Engel, E. Hernandez, J. Avila, and J. J. Lucas, “Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3,” J. Neurosci., 26, 5083–5090 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. N. M. Enman and E. M. Unterwald, “Inhibition of GSK3 attenuates amphetamine-induced hyperactivity and sensitization in the mouse,” Behav. Brain Res., 231, No. 1, 217–225 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. J. Ferrer, M. Barrachina, and B. Puig, “Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration,” Acta Neuropathol., 104, 583–591 (2002).

    PubMed  CAS  Google Scholar 

  25. S. Frame and P. Cohen, “GSK3 takes centre stage more than 20 years after its discovery,” J. Biochem., 359, No. 1, 1–16 (2001).

    Article  CAS  Google Scholar 

  26. R. Gomez-Sintes, F. Hernandez, A. Bortolozzi, et al., “Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice,” EMBO J., 26, 2743–2754 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. P. Goñi-Oliver, J. J. Lucas, J. Avila, and F. Hernández,“ N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation,” J. Biol. Chem., 282, No. 31, 3,406–22,413 (2007).

    Article  Google Scholar 

  28. C. A. Grimes and R. S. Jope, “CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium,” J. Neurochem., 78, 1219–1232 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. T. Hagen and A. Vidal-Puig, “Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45, Biochem. Biophys. Res. Commun., 294, 324–328 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. D. P. Hanger, A. Seereeram, and W. Noble, “Mediators of tau phosphorylation in the pathogenesis of Alzheimer’s disease,” Expert Rev. Neurother., 9, No. 11, 1647–1666 (2009).

    Article  PubMed  CAS  Google Scholar 

  31. M. J. Hart, R. de los Santos, I. N. Albert, et al., “Downregulation of beta-catenin by human axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta,” Curr. Biol., 8, 573–581 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. F. Hernández and J. Avila, “The role of glycogen synthase kinase 3 in the early stages of Alzheimer’s disease,” FEBS Lett., 582, No. 28, 3848–3854 (2008).

    Article  PubMed  Google Scholar 

  33. F. Hernandez, J. Borrell, C. Guaza, et al., “Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments,” J. Neurochem., 83, 1529–1533 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. F. Hernández, E. Gómez de Barreda, A. Fuster-Matanzo, et al., “GSK3: a possible link between beta amyloid peptide and tau protein,” Exp. Neurol., 223, No. 2, 322–325 (2010).

    Article  PubMed  Google Scholar 

  35. F. Hernandez, J. D. Nido, J. Avila, and N. Villanueva, “GSK3 inhibitors and disease,” Mini Rev. Med. Chem., 9, 1024–1029 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. K. P. Hoeflich, J. Luo, E. A. Rubie, et al., “Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation,” Nature, 406, 86–90 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. M. Hong and V. M. Lee, “Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons,” J. Biol. Chem., 272, 19,547–19,553 (1997).

    Article  CAS  Google Scholar 

  38. C. Hooper, R. Killick, and S. Lovestone, “The GSK3 hypothesis of Alzheimer’s disease,” J. Neurochem., 104, 1433–1439 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. C. Hooper, V. Markevich, F. Plattner, et al., “Glycogen synthase kinase-3 inhibition is integral to long-term potentiation,” Eur. J. Neurosci., 25, 81–86 (2007).

    Article  PubMed  Google Scholar 

  40. K. Hughes, E. Nikolakaki, S. E. Plyte, et al., “Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation,” EMBO J., 12, 803–808 (1993).

    PubMed  CAS  PubMed Central  Google Scholar 

  41. S. Ikeda, S. Kishida, H. Yamamoto, et al., “Axin, a negative regulatory of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin,” EMBO J., 17, 1371–1384 (1998).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. K. Iqbal and I. Grundke-Iqbal, “Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective,” J. Alzheimer’s Dis., 9, 219–242 (2006).

    CAS  Google Scholar 

  43. G. R. Jackson, M. Wiedau-Pazos, T. K. Sang, et al., “Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila,” Neuron, 34, No. 4, 509–519 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. E. Jho, S. Lombardas, and F. A. Costantini, “GSK-3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression,” Biochem. Biophys. Res. Commun., 266, 28–35 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. J. Jo, D. J. Whitcomb, K. M. Olsen, et al., “Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta,” Nat. Neurosci., 14, 545–547 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. R. S. Jope and G. V. Johnson, “The glamour and gloom of glycogen synthase kinase-3,” Trends Biochem. Sci., 29, 950–102 (2004).

    Article  Google Scholar 

  47. J. I. Kim, H. R. Lee, S. E. Sim, et al., “PI3Kγ is required for NMDAR-dependent long-term depression and behavioural flexibility,” Nat. Neurosci., 14, 1447–1454 (2011).

    Article  PubMed  CAS  Google Scholar 

  48. T. Kimura, S. Yamashita, S. Nakao, et al., “GSK-3beta is required for memory reconsolidation in adult brain,” PLoS One, 3, e3540 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. E. Lee, A. Salic, R. Krüger, et al., “The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway,” PLoS Biol., 1, No. 1, e10 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  50. M. A. Leissring, “The AbetaCs of Abeta-cleaving proteases,” J. Biol. Chem., 283, 29,645–29,649 (2008).

    Article  CAS  Google Scholar 

  51. Z. Li, J. Jo, J. M. Jia, et al., “Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization,” Cell, 141, 859–871 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. C. Liu, Y. Li, M. Semenov, et al., “Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism,” Cell, 108, 837–847 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annu. Rev. Cell Dev. Biol., 20, 781–810 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. J. J. Lucas, F. Hernandez, P. Gomez-Ramos, et al., “Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice,” EMBO J., 20, 27–39 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. B. T. MacDonald K. Tamai, and X. He, “Wnt/beta-catenin signaling: components mechanisms, and diseases,” Dev. Cell., 17, 9–26 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. M. H. Magdesian, M. M. Carvalho, F. A. Mendes, et al., “Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling,” J. Biol. Chem., 283, No. 14, 9359–9368 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. H. Y. Man, J. W. Lin, W. H. Ju, et al., “Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization,” Neuron, 25, 649–662 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. D. Manahan-Vaughan, A. Kulla, and J. U. Frey, “Requirement of translation but not transcription for the maintenance of long-term depression in the CA1 region of freely moving rats,” J. Neurosci., 20, 8572–8576 (2000).

    PubMed  CAS  Google Scholar 

  59. L. Mateo, J. Infante, J. Llorca, et al., “Association between glycogen synthase kinase-3beta genetic polymorphism and late-onset Alzheimer’s disease,” Dement. Geriatr. Cogn. Disord., 21, 228–232 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. R. T. Mon, A. D. Kohn, G. V. de Ferrari, and A. Kaykas, “WNT and beta-catenin signalling: diseases and therapies,” Nat. Rev. Genet., 5, 691–701 (2004).

    Article  Google Scholar 

  61. G. Morfini, G. Szebenyi, H. Brown, et al., “A novel CDK5-dependent pathway for regulating GSK-3 activity and kinesin-driven motility in neurons,” EMBO J., 23, 2235–2245 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. S. Naska, K. J. Park, G. E. Hannigan, et al., “An essential role for the integrin-linked kinase-glycogen synthase kinase-3beta pathway during dendrite initiation and growth,” J. Neurosci., 26, 13,344–13,356 (2006).

    Article  CAS  Google Scholar 

  63. C. S. Nicolas, S. Pineau, M. Amici, et al., “The JAK/STAT pathway is involved in synaptic plasticity,” Neuron, 73, 374–390 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. W. T. O’Brien, A. D. Harper, F. Jové, et al., “Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium,” J. Neurosci., 24, 6791–6798 (2004).

    Article  PubMed  Google Scholar 

  65. N. Omata, C. T. Chiu, P. R. Moya, et al., “Lentivirally mediated GSK-3beta silencing in the hippocampal dentate gyrus induces antidepressant-like effects in stressed mice,” Int. J. Neuropsychopharmacol., 14, 711–717 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. T. Onishi, H. Iwashita, Y. Uno, et al., “A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease,” J. Neurochem., 119, No. 6, 1330–1340 (2011).

    Article  PubMed  CAS  Google Scholar 

  67. F. Ortega, R. Perez-Sen, V. Morente, et al., “P2X7, NMDA, and BDNF receptors converge on GSK-3 phosphorylation and cooperate to promote survival in cerebellar granule neurons,” Cell. Mol. Life Sci., 67, 1723–1733 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. G. N. Pandey, Y. Dwivedi, H. S. Rizavi, et al., “GSK-3beta gene expression in human postmortem brain: regional distribution, effects of age and suicide,” Neurochem. Res., 34, 274–285 (2009).

    Article  PubMed  CAS  Google Scholar 

  69. C. G. Parson, A. Stoffler, and W. Danysz, “Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system – too little activation is bad, too much is even worse,” Neuropharmacology, 53, 699–723 (2007).

    Article  Google Scholar 

  70. J. J. Pei, E. Braak, H. Braak, et al., “Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer’s disease neurofibrillary changes,” J. Neuropathol. Exp. Neurol., 58, 1010–1019 (1999).

    Article  PubMed  CAS  Google Scholar 

  71. S. Peineau, C. Taghibiglou, C. Bradley, et al., “LTP inhibits LTD in the hippocampus via regulation of GSK-3beta,” Neuron, 53, 703–717 (2007).

    Article  PubMed  CAS  Google Scholar 

  72. C. J. Phiel, C. A. Wilson, V. M. Lee, and P. S. Klein, “GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides,” Nature, 423, No. 6938, 435–439 (2003).

    Article  PubMed  CAS  Google Scholar 

  73. J. Prickaerts, D. Moechars, K. Cryns, et al., “Transgenic mice overexpressing glycogen synthase kinase-3beta: a putative model of hyperactivity and mania,” J. Neurosci., 26, No. 35, 9022–9029 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. B. Rubinfeld, I. Albert, E. Porfiri, et al., “Binding of GSK-3beta to the APC-beta-catenin complex and regulation of complex assembly,” Science, 272, 1023–1026 (1996).

    Article  PubMed  CAS  Google Scholar 

  75. L. Serenó, M. Coma, M. Rodríguez, et al., “A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo,” Neurobiol. Dis., 35, No. 3, 359–367 (2009).

    Article  PubMed  Google Scholar 

  76. M. Setou, D. H. Seog, Y. Tanaka, et al., “Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites,” Nature, 417, 83–87 (2002).

    Article  PubMed  CAS  Google Scholar 

  77. B. Song, B. Olai, Z. Zheng, et al., “Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival,” J. Biol. Chem., 285, 41,122–41,134 (2010).

    Article  CAS  Google Scholar 

  78. K. Spittaels, C. Van den Haute, J. Van Dorpe, et al., “Neonatal neuronal overexpression of glycogen synthase kinase-3beta reduces brain size in transgenic mice,” Neuroscience, 113, 797–808 (2002).

    Article  PubMed  CAS  Google Scholar 

  79. P. Steuber-Buchberger, W. Wurst, and R. Kühn, “Simultaneous Cre-mediated conditional knockdown of two genes in mice,” Genesis, 46, 144–151 (2008).

    Article  PubMed  CAS  Google Scholar 

  80. M. Takahashi, K. Tomizawa, R. Kato, et al., “Localization and developmental changes of tau protein kinase I/glycogen synthase kinase-3beta in rat brain,” J. Neurochem., 63, 245–255 (1994).

    Article  PubMed  CAS  Google Scholar 

  81. A. Takashima, M. Murayama, O. Murayama, et al., “Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate,” Proc. Natl. Acad. Sci. USA, 95, 9637–9641 (1998).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. T. M. Thornton, G. Pedraza-Alva, B. Deng, et al., “Phosphorylation by p38 MAPK as an alternative pathway for GSK-3beta inactivation,” Science, 320, 667–670 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. M. Townsend, T. Mehta, and D. J. Selkoe, “Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway,” J. Biol. Chem., 282, 33,305–33,312 (2007).

    Article  CAS  Google Scholar 

  84. Y. Tozuka, S. Fukuda, T. Namba, et al., “GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells,” Neuron, 47, No. 6, 803–815 (2005).

    Article  PubMed  CAS  Google Scholar 

  85. N. M. Urs, T. L. Daigle, and M. G. Caron, “A dopamine D1 receptor-dependent beta-arrestin signaling complex potentially regulates morphine-induced psychomotor activation but not reward in mice,” Neuropsychopharmacology, 36, 551–558 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. A. Valerio, V. Ghisi, M. Dossena, et al., “Leptin increases axonal growth cons size in developing mouse cortical neurons by convergent signals inactivating glycogen synthase kinase-3beta,” J. Biol. Chem., 281, 12,950–12,958 (2006).

    Article  CAS  Google Scholar 

  87. M. Van Noort and H. Clevers, “TCF transcription factors, mediators of Wnt-signaling in development and cancer,” Dev. Biol., 244., No. 1–8 (2002).

  88. J. Wei, W. Liu, and Z. Yan, “Regulation of AMPA receptor trafficking and function by glycogen synthase kinase-3,” J. Biol. Chem., 285, 26,369–26,376 (2010).

    Article  CAS  Google Scholar 

  89. A. R. White, T. Du, K. M. Laughton, et al., “Degradation of the Alzheimer’s disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity,” J. Biol. Chem., 281, 17,670–17,680 (2006).

    Article  CAS  Google Scholar 

  90. J. R. Woodgett, “Molecular cloning and expression of glycogen synthase kinase-3/factor A,” EMBO J., 9, 2431–2438 (1990).

    PubMed  CAS  PubMed Central  Google Scholar 

  91. P. Wu, Y. X. Xue, Z. B. Ding, et al., “Glycogen synthase kinase-3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory,” J. Neurochem., 118, No. 1, 113–125 (2011).

    Article  PubMed  CAS  Google Scholar 

  92. H. Yamaguchi, K. Ishiguro, T. Uchida, et al., “Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3beta and cyclin-dependent kinase 5, a component of TPK II,” Acta Neuropathol. (Berlin), 92, 232–241 (1996).

    Article  CAS  Google Scholar 

  93. H. Yamamoto, S. Kishida, M. Kishida, et al., “Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability,” J. Biol. Chem., 274, 10,681–10,684 (1999).

    Article  CAS  Google Scholar 

  94. L. Zeng, F. Fagotto, T. Zhang, et al., “The mouse Fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation,” Cell, 90, 181–192 (1997).

    Article  PubMed  CAS  Google Scholar 

  95. Z. Zhao, Z. Wang, Y. Gu, et al., “Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase-3 in dorsal root ganglion sensory neurons,” J. Neurosci., 29, 1350–1360 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. L. Q. Zhu, S. H. Wang, D. Liu, et al., “Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments,” J. Neurosci., 27, 12,211–12,220 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Grigor’yan.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 63, No. 5, pp. 507–519, September–October, 2013.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’yan, G.A. The Role of Glycogen Synthase Kinase 3 in the Mechanisms of Learning and Memory. Neurosci Behav Physi 44, 1051–1058 (2014). https://doi.org/10.1007/s11055-014-0023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-0023-2

Keywords