This review covers published data on the role of GSK-3 in the mechanisms of learning and memory. The regulation of GSK-3 by phosphorylation of serine and tyrosine residues and via the Wnt signal pathway by means of disruption of axin-β-catenin complexes is described. Data on the involvement of GSK-3b in controlled NMDA-dependent long-term depression and long-term potentiation are discussed, as are the possible mechanisms of action of the enzyme via activation of NMDA receptors and AMPA endocytosis. The role of GSK-3b in the development of Alzheimer’s disease via inhibition of the Wnt signal pathway by beta-amyloid is addressed, as are the resultant increases in GSK-3b activity and subsequent hyperphosphorylation of tau and formation of neurofibrillary complexes. The behavior of animals with knockout and overexpression of the GSK-3b genes and the influences of GSK-3b inhibitors in different behavioral models are assessed.
This is a preview of subscription content, access via your institution.
References
H. Aberle, A. Bauer, J. Stappert, et al., “Beta-catenin is a target for the ubiquitin-proteasome pathway,” EMBO J., 16, 3797–3804 (1997).
G. Ahmadian, W. Ju, L. Liu, et al., “Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD,” EMBO J., 23, 1040–1050 (2004).
A. Ali, K. P. Hoeflich, and J. R. Woodgett, “Glycogen synthase kinase-3: properties, functions, and regulation,” Chem. Rev., 101, 2527–2540 (2001).
S. Amit, A. Hatzubai, Y. Birman, et al., “Axin-mediated CKI phosphorylation of beta-catenin at Ser45: a molecular switch for the Wnt pathway,” Genes Dev., 16, 1066–1076 (2002).
J. M. Beaulieu, T. D. Sotnikova, W. D. Yao, et al., “Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase-3 signaling cascade,” Proc. Natl. Acad. Sci. USA, 101, 5099–5014 (2004).
J. M. Beaulieu, X. Zhang, R. M. Rodriguez, et al., “Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency,” Proc. Natl. Acad. Sci. USA, 105, 1333–1338 (2008).
Y. Bersudsky, A. Shaldubina, N. Kozlovsky, et al., “Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results,” Behav. Pharmacol., 19, 217–224 (2008).
G. N. Bijur and R. S. Jope, “Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria,” Neuroreport, 14, 2415–2419 (2003).
T. V. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, 361, 31–39 (1993).
M. A. Bonaguidi, C. Y. Peng, T. McGuire, et al., “Noggin expands neural stem cells in the adult hippocampus,” J. Neurosci., 28, No. 37, 9194–9204,” (2008).
H. Braak and E. Braak, “Neuropathological stageing of Alzheimer’s-related changes,” Acta Neuropathol., 82, No. 4, 239–259 (2001).
C. A. Bradley, S. Peineau, C. Taghibiglou, et al., “A pivotal role of GSK-3 in synaptic plasticity,” Front Mol. Neurosci., No. 5, 5–13 (2012).
K. M. Cadigan and Y. I. Liu, “Wnt signaling: complexity at the surface,” J. Cell Sci., 119, No. 3, 395–402 (2006).
P. M. Chan, L. Lim, and E. Manser, “PAK is regulated by PI3K, PIX, CDC42, and PP2Calpha and mediates focal adhesion turnover in the hyperosmotic stress-induced p38 pathway,” J. Biol. Chem., 283, No. 36, 24,949–24,961 (2008).
H. J. Chung, J. P. Steinberg, R. J. Huganir, and D. J. Linden, “Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression,” Science, 300, 1751–1755 (2003).
G. L. Collingridge, S. Peineau, J. G. Howland, and Y. T. Wang, “Long-term depression in the CNS,” Nat. Rev. Neurosci., 11, 459–0473 (2010).
G. V. De Farrari, A. Papassotiropoulos, T. Biechele, et al., “Common genetic variation within the low-density lipoprotein receptor-related Protein 6 and late-onset Alzheimer’s disease,” Proc. Natl. Acad. Sci. USA, 104, 9434–9439 (2007).
M. Delcommenne, C. Tan, V. Gray, et al., “Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase and protein kinase B/AKT by the integrin-linked kinase,” Proc. Natl. Acad. Sci. USA, 95, 11,211–11,216 (1998).
I. Dominguez K. Itoh, and S. Y. Sokol, “Role of glycogen synthase kinase-3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos,” Proc. Natl. Acad. Sci. USA, 92, 8498–8502 (1995).
J. Du, Y. Weei, L. Liu, et al., “A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors,” Proc. Natl. Acad. Sci. USA, 107, 11,573–11,578 (2010).
N. Embi, D. B. Rylett, and P. Cohen, “Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase,” Eur. J. Biochem., 107, 519–527 (1980).
T. Engel, E. Hernandez, J. Avila, and J. J. Lucas, “Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3,” J. Neurosci., 26, 5083–5090 (2006).
N. M. Enman and E. M. Unterwald, “Inhibition of GSK3 attenuates amphetamine-induced hyperactivity and sensitization in the mouse,” Behav. Brain Res., 231, No. 1, 217–225 (2012).
J. Ferrer, M. Barrachina, and B. Puig, “Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration,” Acta Neuropathol., 104, 583–591 (2002).
S. Frame and P. Cohen, “GSK3 takes centre stage more than 20 years after its discovery,” J. Biochem., 359, No. 1, 1–16 (2001).
R. Gomez-Sintes, F. Hernandez, A. Bortolozzi, et al., “Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice,” EMBO J., 26, 2743–2754 (2007).
P. Goñi-Oliver, J. J. Lucas, J. Avila, and F. Hernández,“ N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation,” J. Biol. Chem., 282, No. 31, 3,406–22,413 (2007).
C. A. Grimes and R. S. Jope, “CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium,” J. Neurochem., 78, 1219–1232 (2001).
T. Hagen and A. Vidal-Puig, “Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45, Biochem. Biophys. Res. Commun., 294, 324–328 (2002).
D. P. Hanger, A. Seereeram, and W. Noble, “Mediators of tau phosphorylation in the pathogenesis of Alzheimer’s disease,” Expert Rev. Neurother., 9, No. 11, 1647–1666 (2009).
M. J. Hart, R. de los Santos, I. N. Albert, et al., “Downregulation of beta-catenin by human axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta,” Curr. Biol., 8, 573–581 (1998).
F. Hernández and J. Avila, “The role of glycogen synthase kinase 3 in the early stages of Alzheimer’s disease,” FEBS Lett., 582, No. 28, 3848–3854 (2008).
F. Hernandez, J. Borrell, C. Guaza, et al., “Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments,” J. Neurochem., 83, 1529–1533 (2002).
F. Hernández, E. Gómez de Barreda, A. Fuster-Matanzo, et al., “GSK3: a possible link between beta amyloid peptide and tau protein,” Exp. Neurol., 223, No. 2, 322–325 (2010).
F. Hernandez, J. D. Nido, J. Avila, and N. Villanueva, “GSK3 inhibitors and disease,” Mini Rev. Med. Chem., 9, 1024–1029 (2009).
K. P. Hoeflich, J. Luo, E. A. Rubie, et al., “Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation,” Nature, 406, 86–90 (2000).
M. Hong and V. M. Lee, “Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons,” J. Biol. Chem., 272, 19,547–19,553 (1997).
C. Hooper, R. Killick, and S. Lovestone, “The GSK3 hypothesis of Alzheimer’s disease,” J. Neurochem., 104, 1433–1439 (2008).
C. Hooper, V. Markevich, F. Plattner, et al., “Glycogen synthase kinase-3 inhibition is integral to long-term potentiation,” Eur. J. Neurosci., 25, 81–86 (2007).
K. Hughes, E. Nikolakaki, S. E. Plyte, et al., “Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation,” EMBO J., 12, 803–808 (1993).
S. Ikeda, S. Kishida, H. Yamamoto, et al., “Axin, a negative regulatory of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin,” EMBO J., 17, 1371–1384 (1998).
K. Iqbal and I. Grundke-Iqbal, “Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective,” J. Alzheimer’s Dis., 9, 219–242 (2006).
G. R. Jackson, M. Wiedau-Pazos, T. K. Sang, et al., “Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila,” Neuron, 34, No. 4, 509–519 (2002).
E. Jho, S. Lombardas, and F. A. Costantini, “GSK-3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression,” Biochem. Biophys. Res. Commun., 266, 28–35 (1999).
J. Jo, D. J. Whitcomb, K. M. Olsen, et al., “Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta,” Nat. Neurosci., 14, 545–547 (2011).
R. S. Jope and G. V. Johnson, “The glamour and gloom of glycogen synthase kinase-3,” Trends Biochem. Sci., 29, 950–102 (2004).
J. I. Kim, H. R. Lee, S. E. Sim, et al., “PI3Kγ is required for NMDAR-dependent long-term depression and behavioural flexibility,” Nat. Neurosci., 14, 1447–1454 (2011).
T. Kimura, S. Yamashita, S. Nakao, et al., “GSK-3beta is required for memory reconsolidation in adult brain,” PLoS One, 3, e3540 (2008).
E. Lee, A. Salic, R. Krüger, et al., “The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway,” PLoS Biol., 1, No. 1, e10 (2003).
M. A. Leissring, “The AbetaCs of Abeta-cleaving proteases,” J. Biol. Chem., 283, 29,645–29,649 (2008).
Z. Li, J. Jo, J. M. Jia, et al., “Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization,” Cell, 141, 859–871 (2010).
C. Liu, Y. Li, M. Semenov, et al., “Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism,” Cell, 108, 837–847 (2002).
C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annu. Rev. Cell Dev. Biol., 20, 781–810 (2004).
J. J. Lucas, F. Hernandez, P. Gomez-Ramos, et al., “Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice,” EMBO J., 20, 27–39 (2001).
B. T. MacDonald K. Tamai, and X. He, “Wnt/beta-catenin signaling: components mechanisms, and diseases,” Dev. Cell., 17, 9–26 (2009).
M. H. Magdesian, M. M. Carvalho, F. A. Mendes, et al., “Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling,” J. Biol. Chem., 283, No. 14, 9359–9368 (2008).
H. Y. Man, J. W. Lin, W. H. Ju, et al., “Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization,” Neuron, 25, 649–662 (2000).
D. Manahan-Vaughan, A. Kulla, and J. U. Frey, “Requirement of translation but not transcription for the maintenance of long-term depression in the CA1 region of freely moving rats,” J. Neurosci., 20, 8572–8576 (2000).
L. Mateo, J. Infante, J. Llorca, et al., “Association between glycogen synthase kinase-3beta genetic polymorphism and late-onset Alzheimer’s disease,” Dement. Geriatr. Cogn. Disord., 21, 228–232 (2006).
R. T. Mon, A. D. Kohn, G. V. de Ferrari, and A. Kaykas, “WNT and beta-catenin signalling: diseases and therapies,” Nat. Rev. Genet., 5, 691–701 (2004).
G. Morfini, G. Szebenyi, H. Brown, et al., “A novel CDK5-dependent pathway for regulating GSK-3 activity and kinesin-driven motility in neurons,” EMBO J., 23, 2235–2245 (2004).
S. Naska, K. J. Park, G. E. Hannigan, et al., “An essential role for the integrin-linked kinase-glycogen synthase kinase-3beta pathway during dendrite initiation and growth,” J. Neurosci., 26, 13,344–13,356 (2006).
C. S. Nicolas, S. Pineau, M. Amici, et al., “The JAK/STAT pathway is involved in synaptic plasticity,” Neuron, 73, 374–390 (2012).
W. T. O’Brien, A. D. Harper, F. Jové, et al., “Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium,” J. Neurosci., 24, 6791–6798 (2004).
N. Omata, C. T. Chiu, P. R. Moya, et al., “Lentivirally mediated GSK-3beta silencing in the hippocampal dentate gyrus induces antidepressant-like effects in stressed mice,” Int. J. Neuropsychopharmacol., 14, 711–717 (2011).
T. Onishi, H. Iwashita, Y. Uno, et al., “A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease,” J. Neurochem., 119, No. 6, 1330–1340 (2011).
F. Ortega, R. Perez-Sen, V. Morente, et al., “P2X7, NMDA, and BDNF receptors converge on GSK-3 phosphorylation and cooperate to promote survival in cerebellar granule neurons,” Cell. Mol. Life Sci., 67, 1723–1733 (2010).
G. N. Pandey, Y. Dwivedi, H. S. Rizavi, et al., “GSK-3beta gene expression in human postmortem brain: regional distribution, effects of age and suicide,” Neurochem. Res., 34, 274–285 (2009).
C. G. Parson, A. Stoffler, and W. Danysz, “Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system – too little activation is bad, too much is even worse,” Neuropharmacology, 53, 699–723 (2007).
J. J. Pei, E. Braak, H. Braak, et al., “Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer’s disease neurofibrillary changes,” J. Neuropathol. Exp. Neurol., 58, 1010–1019 (1999).
S. Peineau, C. Taghibiglou, C. Bradley, et al., “LTP inhibits LTD in the hippocampus via regulation of GSK-3beta,” Neuron, 53, 703–717 (2007).
C. J. Phiel, C. A. Wilson, V. M. Lee, and P. S. Klein, “GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides,” Nature, 423, No. 6938, 435–439 (2003).
J. Prickaerts, D. Moechars, K. Cryns, et al., “Transgenic mice overexpressing glycogen synthase kinase-3beta: a putative model of hyperactivity and mania,” J. Neurosci., 26, No. 35, 9022–9029 (2006).
B. Rubinfeld, I. Albert, E. Porfiri, et al., “Binding of GSK-3beta to the APC-beta-catenin complex and regulation of complex assembly,” Science, 272, 1023–1026 (1996).
L. Serenó, M. Coma, M. Rodríguez, et al., “A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo,” Neurobiol. Dis., 35, No. 3, 359–367 (2009).
M. Setou, D. H. Seog, Y. Tanaka, et al., “Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites,” Nature, 417, 83–87 (2002).
B. Song, B. Olai, Z. Zheng, et al., “Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival,” J. Biol. Chem., 285, 41,122–41,134 (2010).
K. Spittaels, C. Van den Haute, J. Van Dorpe, et al., “Neonatal neuronal overexpression of glycogen synthase kinase-3beta reduces brain size in transgenic mice,” Neuroscience, 113, 797–808 (2002).
P. Steuber-Buchberger, W. Wurst, and R. Kühn, “Simultaneous Cre-mediated conditional knockdown of two genes in mice,” Genesis, 46, 144–151 (2008).
M. Takahashi, K. Tomizawa, R. Kato, et al., “Localization and developmental changes of tau protein kinase I/glycogen synthase kinase-3beta in rat brain,” J. Neurochem., 63, 245–255 (1994).
A. Takashima, M. Murayama, O. Murayama, et al., “Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate,” Proc. Natl. Acad. Sci. USA, 95, 9637–9641 (1998).
T. M. Thornton, G. Pedraza-Alva, B. Deng, et al., “Phosphorylation by p38 MAPK as an alternative pathway for GSK-3beta inactivation,” Science, 320, 667–670 (2008).
M. Townsend, T. Mehta, and D. J. Selkoe, “Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway,” J. Biol. Chem., 282, 33,305–33,312 (2007).
Y. Tozuka, S. Fukuda, T. Namba, et al., “GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells,” Neuron, 47, No. 6, 803–815 (2005).
N. M. Urs, T. L. Daigle, and M. G. Caron, “A dopamine D1 receptor-dependent beta-arrestin signaling complex potentially regulates morphine-induced psychomotor activation but not reward in mice,” Neuropsychopharmacology, 36, 551–558 (2011).
A. Valerio, V. Ghisi, M. Dossena, et al., “Leptin increases axonal growth cons size in developing mouse cortical neurons by convergent signals inactivating glycogen synthase kinase-3beta,” J. Biol. Chem., 281, 12,950–12,958 (2006).
M. Van Noort and H. Clevers, “TCF transcription factors, mediators of Wnt-signaling in development and cancer,” Dev. Biol., 244., No. 1–8 (2002).
J. Wei, W. Liu, and Z. Yan, “Regulation of AMPA receptor trafficking and function by glycogen synthase kinase-3,” J. Biol. Chem., 285, 26,369–26,376 (2010).
A. R. White, T. Du, K. M. Laughton, et al., “Degradation of the Alzheimer’s disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity,” J. Biol. Chem., 281, 17,670–17,680 (2006).
J. R. Woodgett, “Molecular cloning and expression of glycogen synthase kinase-3/factor A,” EMBO J., 9, 2431–2438 (1990).
P. Wu, Y. X. Xue, Z. B. Ding, et al., “Glycogen synthase kinase-3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory,” J. Neurochem., 118, No. 1, 113–125 (2011).
H. Yamaguchi, K. Ishiguro, T. Uchida, et al., “Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3beta and cyclin-dependent kinase 5, a component of TPK II,” Acta Neuropathol. (Berlin), 92, 232–241 (1996).
H. Yamamoto, S. Kishida, M. Kishida, et al., “Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability,” J. Biol. Chem., 274, 10,681–10,684 (1999).
L. Zeng, F. Fagotto, T. Zhang, et al., “The mouse Fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation,” Cell, 90, 181–192 (1997).
Z. Zhao, Z. Wang, Y. Gu, et al., “Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase-3 in dorsal root ganglion sensory neurons,” J. Neurosci., 29, 1350–1360 (2009).
L. Q. Zhu, S. H. Wang, D. Liu, et al., “Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments,” J. Neurosci., 27, 12,211–12,220 (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 63, No. 5, pp. 507–519, September–October, 2013.
Rights and permissions
About this article
Cite this article
Grigor’yan, G.A. The Role of Glycogen Synthase Kinase 3 in the Mechanisms of Learning and Memory. Neurosci Behav Physi 44, 1051–1058 (2014). https://doi.org/10.1007/s11055-014-0023-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11055-014-0023-2