Skip to main content

Genetic Determinants of Rhythmic Movements Motor Pattern Generation in Drosophila Melanogaster

Our previous studies of the molecular and cellular mechanisms underlying the generation of rhythmic movements motor patterns were based on use of a selection of candidate genes in which mutations cause impairments to the motor activity of Drosophila melanogaster. We report here testing of the locomotor behavior of Drosophila strains with decreases in the expression of 12 candidate genes in the nervous system. Target genes were suppressed by synthesizing interfering RNA using the GAL4/UAS system under the control of the elav, nrv2, appl, and tsh gene promoters (drivers). These experiments showed that RNA interference of virtually all the candidate genes was accompanied by changes in one or more locomotor parameters. The nature of the abnormalities occurring under the control the various drivers allowed us to identify those genes whose activity in nervous system cells is required for the normal functioning of the central motor pattern generator for locomotor acts.

This is a preview of subscription content, access via your institution.


  1. N. G. Kamyshev, “Drosophila as a model system for discovering the molecular mechanisms of motor and cognitive dysfunctions and the search for pharmacological means for correcting them: a quantitative approach to assessing changes in locomotor behavior,” in: Measurement and Information Technologies in Healthcare: Coll. Sci. Works, St. Petersburg (2011), pp. 152–160.

  2. S. A. Fedotov, Yu. V. Bragina, N. G. Besedina, et al., “Genetic studies of motor functions in Drosophila melanogaster,” Ekol. Genetika, 10, No. 1, 51–61 (2012).

    Google Scholar 

  3. S. Abdelilah-Seyfried, Y. M. Chan, C. Zeng, et al., “A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ,” Genetics, 155, No. 2, 733–752 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Y. I. Arshavsky, T. G. Deliagina, and G. N. Orlovsky, “Pattern generation,” Curr. Opin. Neurobiol., 7, No. 6, 781–789 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. C. Bagni, S. Bray, J. A. Gogos, et al., “The Drosophila zinc finger transcription factor CF2 is a myogenic marker downstream of MEF2 during muscle development,” Mech. Dev., 117, No. 1–2, 265–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. K. L. Briggman and W. B. Kristan, “Multifunctional pattern-generating circuits,” Annu. Rev. Neurosci., 31, 271–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. R. S. Burton and A. la Spada, “Trehalase polymorphism in Drosophila melanogaster,” Biochem. Genet., 24, No. 9–10, 715–719 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. V. R. Chintapalli, J. Wang, and J. A. Dow, “Using FlyAtlas to identify better Drosophila models of human disease,” Nat. Genetics, 39, No. 6, 715–720 (2007).

    Article  CAS  Google Scholar 

  9. P. Chomczynski and N. Sacchi, “The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on,” Nat. Protoc., 1, No. 2, 581–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. J. B. Duffy, “GAL4 system in Drosophila: a fly geneticist’s Swiss army knife,” Genesis, 34, No. 1–2, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. E. S. Edgington, Randomization Tests Marcel Dekker, New York (1995), 3rd ed.

    Google Scholar 

  12. L. Fasano, L. Roder, N. Core, et al., “The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs,” Cell, 64, No. 1, 63–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. J. Kim, S. Lee, S. Ko, and J. Kim-Ha, “dGIPC is required for the locomotive activity and longevity in Drosophila,” Biochem. Biophys. Res. Commun., 402, No. 3, 565–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. L. E. Martin-Morris and K. White, “The Drosophila transcript encoded by the beta-amyloid protein precursor-like gene is restricted to the nervous system,” Development, 110, No. 1, 185–195 (1990).

    CAS  PubMed  Google Scholar 

  15. C. McCormick, G. Duncan, K. T. Goutsos, and F. Tufaro, “The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparin sulfate,” Proc. Natl. Acad. Sci. USA, 97, No. 2, 668–673 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. R. Muller, A. J. Hulsmeier, F. Altmann, et al., “Characterization of mucin-type core-1 β1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster,” FEBS. J., 272, No. 17, 4295–4305 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. J. Z. Parrish, M. D. Kim, L. Y. Jan, and Y. N. Jan, “Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites,” Genes Dev., 20, No. 7, 820–835 (2000).

    Article  Google Scholar 

  18. M. W. Pfaffl, G. W. Horgan, and L. Dempfle, “Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR,” Nucl. Acids Res., 30, No. 9, e36 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  19. S. Robinow and K. White, “Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development,” J. Neurobiol., 22, No. 5, 443–461 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. T. J. Sheldon, I. Miguel-Aliaga, A. P. Gould, et al., “A novel family of single VWC-domain proteins in invertebrates,” FEBS Lett., 581, No. 27, 5268–5274 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. M. S. Shim, J. Y. Kim, H. K. Jung, et al., “Elevation of glutamine level by selenophosphate synthetase I knockdown induces metamitochondrial formation in Drosophila cells,” J. Biol. Chem., 284, No. 47, 32,881–32,894 (2009).

    Article  CAS  Google Scholar 

  22. J. A. Simon and J. T. Lis, “A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements,” Nucl. Acids Res., 15, No. 7, 2971–2988 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. R. Strauss, “The central complex and the genetic dissociation of locomotor behaviour,” Curr. Opin. Neurobiol., 12, No. 6, 633–638 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. B. Sun, P. Xu, and P. M. Salvaterra, “Dynamic visualization of nervous system in live Drosophila,” Proc. Natl. Acad. Sci. USA, 96, No. 18, 10,438–10,443 (1999).

    Article  CAS  Google Scholar 

  25. W. Supatto, A. McMahon, S. E. Fraser, and A. Stathopoulos, “Quantitative imaging of collective migration during Drosophila gastrulation: multiphoton microscopy and computational analysis,” Nat. Protoc., 4, No. 10, 1397–1412 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. A. Fedotov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 1, pp. 120–130, January, 2013.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedotov, S.A., Bragina, Y.V., Besedina, N.G. et al. Genetic Determinants of Rhythmic Movements Motor Pattern Generation in Drosophila Melanogaster . Neurosci Behav Physi 44, 995–1001 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • locomotion
  • Drosophila
  • RNA interference
  • central motor pattern generators