Advertisement

Neuroscience and Behavioral Physiology

, Volume 42, Issue 9, pp 988–995 | Cite as

Structural Basis of the Inhibitory Functions of the Efferent Systems of the Parietal Cortex

  • N. M. Ipekchyan
Article
  • 40 Downloads

The relative quantitative distributions of all associative and descending efferent fibers and the ultrastructural organization of terminals of the parietal cortex (fields 5 and 7) in the caudate nucleus (NC) and red nucleus (NR) in cats were studied after local point lesions to the cortex in these fields. The maximal projections of associative fibers were found to be to the fundal fields of the motor cortex and the Clare–Bishop field, with a moderate projection to fields 31 and 19, and occasional degenerating fibers to fields 1, 2, 3a, 3d, 30, and 23. Among descending fibers, the most extensive projections were to the NC, NR, reticular nucleus, and midbrain nuclei, as well as to the pontine nuclei, where immunocytochemical studies revealed mainly GABAergic terminals. Electron microscopic studies led to the suggestion that the influences of the parietal cortex are mediated by axospinous synapses of intermediate short-axon spiny cells of the dorsolateral part of the head of the NC and axodendritic synapses of Golgi II cells in the parvocellular part of the NR. Given the maximal involvement of the fundal fields of the motor cortex and the inhibitory subcortical (NC) and stem nuclei (NR, reticular nuclei of the thalamus), midbrain, and pontine nuclei), we suggest that they serve as the morphological substrate mediating the inhibitory integrative function of the parietal cortex.

Keywords

brain parietal cortex (fields 5 and 7) associative and descending efferent fibers ultrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. S. Adrianov, Principles of Organization of Brain Integrative Activity [in Russian], Meditsina, Moscow (1976).Google Scholar
  2. 2.
    A. S. Amatuni, Functional Organization and Involvement of the Central Nuclei in the Integrative Activity of the Cerebellum [in Russian], Erevan, Republic of Armenia (1987).Google Scholar
  3. 3.
    E. B. Aushanyan and V. A. Otellin, The Caudate Nucleus [in Russian], Nauka, Leningrad (1976).Google Scholar
  4. 4.
    A. S. Batuev, Evolution of the Functions of the Parietal Lobes of the Brain [in Russian], Nauka, Leningrad (1973).Google Scholar
  5. 5.
    A. S. Batuev, Higher Integrative Systems of the Brain [in Russian], Nauka, Leningrad (1981).Google Scholar
  6. 6.
    V. M. Bekhterev, Basic Theory of Brain Function [in Russian], Brockhouse and Ephron, St. Petersburg (1907–1907), Vols. 6–7.Google Scholar
  7. 7.
    Yu. S. Borodkin and P. D. Shabanov, Neurochemical Mechanisms of the Extinction of Memory Traces [in Russian], Nauka, Leningrad (1986).Google Scholar
  8. 8.
    T. A. Bragina, “Degeneration of afferent in the reticular nucleus of the thalamus in the cat after injection of kainic acid into the parietal cortex,” in: The Associative Systems of the Brain [in Russian], Nauka, Leningrad (1985), pp. 59–61.Google Scholar
  9. 9.
    D. Burlidge, Mechanisms of the Brain [Russian translation], Mir, Moscow (1965).Google Scholar
  10. 10.
    M. O. Gurevich, A. A. Khachaturyan, and A. Khachaturov, “A method for cytoarchitectonic mapping and measurement of fields. The cytoarchitectonics of the cerebral cortex in felines,” in: Higher Nervous Activity [in Russian], Biomedgiz, Moscow (1929),Vol. 1, pp. 171–184.Google Scholar
  11. 11.
    N. M. Ipekchyan, “Projection of the parietal cortex to the visual,” Biol. Zh. Armenii, 43, No. 10–11, 918–922 (1990).Google Scholar
  12. 12.
    N. M. Ipekchyan, “Features of the organization of the parietal cortex,” in: Proceedings of the “Electron Microscopy” Conference [in Russian], Armenian Society of Electron Microscopists Press, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Russian Academy of Natural Sciences, Erevan (1995).Google Scholar
  13. 13.
    N. M. Ipekchyan, “Comparative analysis of the corticotectal projections of the motor and parietal areas of the brain,” in: Proc. Conf. Structural-Functional, Neurochemical, and Immunochemical Patterns of Brain Asymmetry and Plasticity, Russian Academy of Medical Sciences and Research Institute of the Brain, Moscow (2007), pp. 268–272.Google Scholar
  14. 14.
    N. M. Ipekchyan, “Comparative analysis of the quantitative characteristics of the corticothalamic projections of fields 5 and 7 of the parietal cortex,” Morfologiya, 137, No. 1, 14–16 (2010).Google Scholar
  15. 15.
    N. M. Ipekchyan and L. A. Avakyan, “Connections between the various fields of the parietal cortex and caudate nucleus in the cat brain,” Arkh. Anat., 95, No. 7, 18–24 (1988).Google Scholar
  16. 16.
    N. M. Ipekchyan and L. A. Avakyan, “Characteristics of the structural organization of the axon terminals of the parietal cortex in the caudate nucleus,” in: Proceedings of the “Striate System in Health and Pathology” Symposium [in Russian], Nauka, Leningrad (1988), pp. 41–42.Google Scholar
  17. 17.
    N. M. Ipekchyan and L. A. Avakyan, “Ultrastructural changes in the red nucleus evoked by lesioning of the parietal cortex,” in: Structural-Functional and Neurochemical Patterns of Brain Asymmetry and Plasticity [in Russian], Russian Academy of Medical Sciences and Research Institute of the Brain, Moscow (2005), pp. 137–140.Google Scholar
  18. 18.
    N. M. Ipekchyan and O. G. Baklavadzhyan, “Projections of fields 5 and 7 to subdivisions of the sensorimotor area of the cerebral cortex,” Neirofiziologiya, 20, No. 3, 319–326 (1988).Google Scholar
  19. 19.
    N. M. Ipekchyan and O. G. Baklavadzhyan, “Distribution of efferents from the parietal cortex to the cingulate gyrus,” Biol. Zh. Armenii, 42, No. 9–10, 942–945 (1989).Google Scholar
  20. 20.
    N. M. Ipekchyan and O. G. Baklavadzhyan, “Connections of the parietal cortex with the lateral suprasylvian gyrus (the Clare–Bishop field) in the auditory cortex,” Neirofiziologiya, 22, No. 6, 739–745 (1990).Google Scholar
  21. 21.
    N. M. Ipekchyan and O. G. Baklavadzhyan, “Comparative analysis of the descending projections of fields 5 and 7 of the parietal cortex to the brainstem in cats,” Morfologiya, 117, No. 2, 29–32 (2000).Google Scholar
  22. 22.
    I. I. Konorski, Integrative Brain Activity [Russian translation], Mir, Moscow (1970).Google Scholar
  23. 23.
    I. I. Korenok, Neural Mechanisms of Afferent and Efferent Functions of the Parietal Associative Area of the Cerebral Cortex: Author’s Abstract of Doctoral Thesis in Biological Sciences, Leningrad (1990).Google Scholar
  24. 24.
    T. A. Leontovich, Neural Organization of the Subcortical Formations of the Forebrain [in Russian], Meditsina, Moscow (1978).Google Scholar
  25. 25.
    V. A. Maiskii and F. N. Serkov, “Structure and connections of the neostriatum as an integrative subcortical center. Retrograde axonal transport of luminescent dyes and horseradish peroxidase,” in: The Associative Systems of the Brain [in Russian], Nauka, Leningrad (1885), pp. 70–74.Google Scholar
  26. 26.
    V. Mountcastle, “An organizing principle of brain function: An elementary module and a distributed system,” in: The Mindful Brain [Russian translation], Mir, Moscow (1981), pp. 15–67.Google Scholar
  27. 27.
    V. A. Otellin and M. N. Baikovskaya, “Functional-morphological analysis of various corticocaudal connections,” Fiziol. Zh. SSSR, 65, No. 1, 15–21 (1979).PubMedGoogle Scholar
  28. 28.
    G. I. Polyakov, “Results of studies of the development of the neural structure of the cortical ends of analyzers in humans,” in: Structure and Function of Human Analyzers during Ontogeny [in Russian], Medgiz, Moscow (1961), pp. 5–24.Google Scholar
  29. 29.
    G. I. Polyakov, Principles of the Neural Organization of the Brain [in Russian], Moscow State University Press, Moscow (1965).Google Scholar
  30. 30.
    N. N. Traugott, S. I. Kaidanova, and S. A. Meerson, “Functions of the thalamoparietal associative system in humans,” in: Evolution of the Functions of the Thalamic Lobe of the Brain [in Russian], Nauka, Leningrad (1973), pp. 118–188.Google Scholar
  31. 31.
    A. A. Ukhtomskii, Selected Works [in Russian], Nauka, Leningrad (1978).Google Scholar
  32. 32.
    V. V. Fanardzhyan and Dzh. S. Sarkisyan, The Neural Mechanisms of the Red Nucleus [in Russian], Nauka, Moscow (1993).Google Scholar
  33. 33.
    G. I. Allen and N. Tsukahara, “Cerebrocebellar communication system,” Physiol. Rev., 54, No. 4, 957–1006 (1974).PubMedGoogle Scholar
  34. 34.
    R. A. Andersen and C. A. Buneo, “Intentional maps in posterior parietal cortex,” Anne. Rev. Neuroscience, 25, 189–220 (2002).CrossRefGoogle Scholar
  35. 35.
    B. G. Border, and G. A. Michailoff, “GABAergic neural elements in the rat basilar pons: electron microscopic immunochemistry,” J. Comp. Neurol., 295, No. 1, 123–135 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    P. Bordal, “The corticopontine projection in the rhesus monkey. Origin and principles of organization,” Brain, 101, No. 2, 251–283 (1978).CrossRefGoogle Scholar
  37. 37.
    P. Brodal, “The cerebropontocerebellar pathway: salient features of its organization,” Exp. Brain Res., 6, Supplement, 108–133 (1982).CrossRefGoogle Scholar
  38. 38.
    P. Bordal, “Principles of organization of the corticopontocerebellar projections to crus II in the cat with particular reference to the parietal cortical areas,” Neuroscience, 10, No. 3, 621–638 (1983).CrossRefGoogle Scholar
  39. 39.
    P. Brodal, G. Mihailoff, B. Border, et al., “GABA-containing neurons in the pontine nuclei of the rat, cat and monkey. An immunocytochemical study,” Neuroscience, 25, No. 1, 27–45 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    C. Cavada and P. S. Goldman-Rakic, “Posterior parietal cortex in rhesus monkey. I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections,” J. Comp. Neurol., 287, No. 4, 393–421 (1989).PubMedCrossRefGoogle Scholar
  41. 41.
    Y. E. Cohen and R. A. Andersen, “A common reference frame for movement plans in the posterior parietal cortex,” Nat. Rev. Neuroscience, 3, 553–562 (2002).CrossRefGoogle Scholar
  42. 42.
    E. Conde and H. Conde, “Study of the morphology of the cells of the red nucleus of the cat by the Golgi–Cox method,” Brain Res., 53, No. 2, 249–271 (1973).PubMedCrossRefGoogle Scholar
  43. 43.
    I. Darian-Smith “Cortical projections of thalamic neurons excited by mechanical stimulation of the face of the cat,” J. Physiol., 171, No. 2, 339–360 (1964).PubMedGoogle Scholar
  44. 44.
    H.-J. Freund, “Premotor areas in man,” in: The Motor System in Neurobiology, Elsevier Biomedical Press, Amsterdam, New York, Oxford (1985), pp. 332–335.Google Scholar
  45. 45.
    U. Hasband and R. Passigkam, “The role of premotor and parietal cortex in the direction of action,” Brain Res., 240, No. 2, 368–372 (1982).CrossRefGoogle Scholar
  46. 46.
    R. Hassler, J. W. Chung, U. Rinne, and A. Wagner, “Selective degeneration of two out of the nine types of synapses in cat caudate nucleus after cortical lesions,” Exp. Brain Res., 31, No. 1, 67–80 (1978).PubMedCrossRefGoogle Scholar
  47. 47.
    R. Hassler and K. Muhs-Clement, “Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze,” J. Hirnforsch., 6, No. 6, 377–421 (1964).Google Scholar
  48. 48.
    C. R. Houser, I. E. Vaughn, R. P. Barber, and E. Roberts, “GABA neurons are the major cell type of the nucleus reticularis thalami,” Brain Res., 200, No. 2, 341–354 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    D. R. Humphrey, D. Bulyalert, and D. J. Reed, “Organization of the cortical projections to the parvocellular red nucleus (pRN) in the monkey,” in: Horology and Function of the Red Nucleus, CNRS, Marseille (1986), p. 35.Google Scholar
  50. 50.
    D. R. Humphrey, R. Gold, and D. J. Reed, “Sizes, laminar and topographic origins of cortical projections to the motor divisions of the red nucleus in the monkey,” J. Comp. Neurol., 225, No. 1, 75–94 (1984).PubMedCrossRefGoogle Scholar
  51. 51.
    T. Janeskog and Y. Padel, “Cerebral cortical areas of origin of excitation and inhibition of rubrospinal cells in the cat,” Exp. Brain Res., 50, No. 2/3, 309–320 (1983).Google Scholar
  52. 52.
    E. G. Jones, J. D. Coulter, H. Burton, and R. Porter, “Cells of origin and terminal distribution of corticostriate fibers arising in the sensorimotor cortex of monkeys,” J. Comp. Neurol., 173, No. 1, 53–80 (1977).PubMedCrossRefGoogle Scholar
  53. 53.
    E. G. Jones, J. D. Coulter, and S. H. C. Hendry, “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys,” J. Comp. Neurol., 181, No. 2, 291–348 (1978).PubMedCrossRefGoogle Scholar
  54. 54.
    E. G. Jones and T. P. S. Powell, “Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral connexions,” Brain, 92, No. 4, 477–502 (1969).PubMedCrossRefGoogle Scholar
  55. 55.
    E. G. Jones and T. S. Powell, “An anatomical study of converging sensory pathways within the cerebral cortex of the monkey,” Brain, 93, No. 4, 793–820 (1970).PubMedCrossRefGoogle Scholar
  56. 56.
    P. B. Jonson, A. Angelucci, R. M. Zipara, D. Minchaechi, M. Bentivoglio, and R. Caminiti, “Segregation and overlap of callosal and association neurons in frontal and parietal cortices of primates: A spectral and coherency analysis,” J. Neurosci., 9, No. 7, 2313–2326 (1989).Google Scholar
  57. 57.
    J. F. Kalaska, R. Caminiti, and A. Georgopoulos, “Cortical mechanisms related to the direction of two-dimensional arm movement: Relations in parietal area 5 and comparison with motor cortex,” Exp. Brain Res., 51, No. 2, 247–260 (1983).PubMedCrossRefGoogle Scholar
  58. 58.
    Y. Kang, K. Endo, T. Araki, and A. Mitani, “Dual mode of projections from the parietal to motor cortex in the cat,” Exp. Brain Res., 62, No. 2, 281–292 (1986).PubMedCrossRefGoogle Scholar
  59. 59.
    K. Kawamura and M. Chiba, “Cortical neurons projecting to the pontine neurons in the cat. An experimental study with the horseradish peroxidase technique,” Exp. Brain Res., 35, No. 2, 269–285 (1979).PubMedCrossRefGoogle Scholar
  60. 60.
    J. M. Kemp and T. P. S. Powell, “The corticostriate projection in the monkey,” Brain, 93, No. 3, 525–546 (1970).PubMedCrossRefGoogle Scholar
  61. 61.
    J. M. Kemp and T. P. S. Powell, “The site of termination of afferent fibers in the caudate nucleus,” Phil. Trans. Roy. Soc. Lond. B. Biol. Sci., 262, 413–427 (1971).CrossRefGoogle Scholar
  62. 62.
    R. T. Knight, J. Singh, and D. L. Wood, “Pre-movement parietal lobe input to human sensorimotor cortex,” Brain Res., 498, No. 1, 190–194 (1989).PubMedCrossRefGoogle Scholar
  63. 63.
    G. Koch, M. Fernandez del Olmo, B. Cheeran, et al., “Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex,” J. Neurosci., 27, 6815–6822 (2007).PubMedCrossRefGoogle Scholar
  64. 64.
    G. Koch, M. Fernandez del Olmo, B. Cheeran, et al., “Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space,” J. Neurosci., 28, 5944–5953 (2008).PubMedCrossRefGoogle Scholar
  65. 65.
    G. Koch, D. Ruge, B. Cheeran, et al., “TMS activation of interhemispheric pathways between the posterior parietal cortex and contralateral motor cortex,” J. Physiol., 587, No. 17, 4281–4292 (2009).PubMedCrossRefGoogle Scholar
  66. 66.
    H. G. J. M. Kuypers, “Corticobulbar connections to the pons and lower brain-stem in man. An anatomical study,” Brain, 81, No. 3, 364–388 (1958).PubMedCrossRefGoogle Scholar
  67. 67.
    H. G. J. M. Kuypers and D. G. Lawrence, “Cortical projection to the brain stem,” Brain Res., 4, No. 2/3, 151–188 (1967).PubMedCrossRefGoogle Scholar
  68. 68.
    J. Lehman and S. Z. Lancer, “The striatal cholinergic interneurons: synaptic target of dopaminergic terminals,” Neuroscience, 10, No. 4, 1105–1120 (1983).CrossRefGoogle Scholar
  69. 69.
    R. L. Macdonald, J. Q. Kang, and M. J. Gallagher, “Mutation in GABA receptor subunits associated with genetic epilepsies,” J. Physiol., 588, No. 11, 1861–1869 (2010).PubMedCrossRefGoogle Scholar
  70. 70.
    J. Massion and K. Sasaki “Cerebro-cerebellar interactions: Solved and unsolved problems,” in: Cerebellar Interactions, Elsevier, Amsterdam (1979), pp. 261–287.Google Scholar
  71. 71.
    K. Mechelse, “The localization of the thalamo-cortical and corticothalamic fibers in the internal capsule and thalamus of the cat,” J. Hirnforsch., 2, No. 4, 408–453 (1962).Google Scholar
  72. 72.
    G. A. Mihailoff, B. G. Border, and S. A. Azizi, “Electron microscopic, immunochemical and electrophysiological studies of the basilar pontine nuclei in the rat and monkey,” Anat. Rec., 223, 79 (1989).Google Scholar
  73. 73.
    V. B. Mountcastle, “The parietal system and some higher brain functions,” Cereb. Cortex, 5, 377–390 (1995).PubMedCrossRefGoogle Scholar
  74. 74.
    E. Murakami, H. Katsumary, K. Saito, and N. Tsukahara, “A quantitative study of synaptic reorganization in red nucleus neurons after lesion of the nucleus interpositus of the cat: an electron microscopic study involving intracellular injection of horseradish peroxidase,” Brain Res., 242, No. 1, 41–53 (1982).PubMedCrossRefGoogle Scholar
  75. 75.
    J. N. Neal, R. C. A. Pearson, and T. P. S. Powell, “The cortico-cortical connections of area 7b (or PRF) in the parietal lobe of the monkey,” Brain Res., 419, neuron 1/2, 341–346 (1987).Google Scholar
  76. 76.
    A. Nieoullon and N. Dustricier, “Increased glutamate decarboxylase activity in red nucleus of the adult cat after cerebellar lesion,” Brain Res., 224, No. 1, 129–139 (1981).PubMedCrossRefGoogle Scholar
  77. 77.
    A. Nieoullon, C. Vuillon-Cacciuttolo, D. Andre, and O. Bosler, “Postlesional plasticity of GABA neurons in the red nucleus,” in: Histology and Function of the Red Nucleus, CNRS, Marseille (1986), p. 36.Google Scholar
  78. 78.
    H. Oka and K. Jinnai, “Cerebrocerebellar connections through the parvocellular part of the red nucleus,” in: Integrative Control Function of the Brain, Elsevier, Amsterdam (1978), Vol. 1, pp. 184–186.Google Scholar
  79. 79.
    C. R. Olson and I. Jeffers, “Organization of cortical and subcortical projections to the area 6m of the cat,” J. Comp. Neurol., 266, No. 1, 73–94 (1987).PubMedCrossRefGoogle Scholar
  80. 80.
    T. Oshima, “Corticospinal collateral actions on pontine nuclei of the cat,” in: Integrative Control Functions of the Brain, Elsevier, Amsterdam (1978), Vol. 1, pp. 180–181.Google Scholar
  81. 81.
    T. Oshima, “The microphysiology of pontine nuclei in the cat concerning the concept of internal feedback,” Dev. Neurosci., 6, 125–139 (1979).Google Scholar
  82. 82.
    K. Otsuka and R. Hassler, “Über Aufbau und Gleiberung der corticalen Sehsphärebei der Katze,” Arch. Psychiat. Nervenkr., 203, 212–234 (1962).PubMedCrossRefGoogle Scholar
  83. 83.
    D. N. Pandya and B. Seltzer, “Intrinsic connection and architectonics of posterior parietal cortex in the rhesus monkey,” J. Comp. Neurol., 204, No. 2, 196–210 (1982).PubMedCrossRefGoogle Scholar
  84. 84.
    R. C. A. Pearson, P. Brodal, and T. P. S. Powell, “The projection of the thalamus upon the parietal lobe in monkey,” Brain Res., 144, No. 1, 1430148 (1978).CrossRefGoogle Scholar
  85. 85.
    G. Pizzini, G. Tredici, and A. Miani, “Corticorubral projection in the cat. An experimental electron microscopic study,” J. Submicroscop. Cytol., 7, 231–238 (1975).Google Scholar
  86. 86.
    C. B. Ribak, J. E. Vaughn, and E. Roberts, “The GABA neurons and their axon terminals in rat corpus striatum demonstrated by GAD immunocytochemistry,” J. Comp. Neurol., 187, No. 2, 261–284 (1979).PubMedCrossRefGoogle Scholar
  87. 87.
    E. Rinvik, “Thalamic commissural connection in the rat,” Neurosci. Lett., 44, No. 3, 311–316 (1984).PubMedCrossRefGoogle Scholar
  88. 88.
    R. T. Robertson and T. J. Cunningham, “Organization of corticothalamic projections from parietal cortex in cat,” J. Comp. Neurol., 199, No. 4, 569–585 (1981).PubMedCrossRefGoogle Scholar
  89. 89.
    R. T. Robertson and E. Rinvik, “The corticothalamic projections from parietal region of the cerebral cortex. Experimental degenerative studies in the cat,” Brain Res., 51, 61–79 (1973).PubMedCrossRefGoogle Scholar
  90. 90.
    A. Sadun, “Differential distribution of cortical terminations in the cat red nucleus,” Brain Res., 99, No. 1, 145–151 (1975).PubMedCrossRefGoogle Scholar
  91. 91.
    H. Sakata, J. Takaoka, A. Kawarasaki, and A. Shibutani, “Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey,” Brain Res., 64, No. 1, 85–102 (1973).PubMedCrossRefGoogle Scholar
  92. 92.
    F. Sanides and J. Hoffman, “Cyto- and myeloarchitecture of the visual cortex of the cat and surrounding integration cortices,” J. Hirnforsch., 11, No. 1/2, 79–104 (1969).PubMedGoogle Scholar
  93. 93.
    J. Singh and R. T. Knight, “Effects of posterior association cortex lesions on brain potentials preceding self-initiated movements,” J. Neurosci., 13, No. 15, 1820–1829 (1993).PubMedGoogle Scholar
  94. 94.
    K. R. Smith and J. T. Kittler, “The cell biology of synaptic inhibition in health and disease,” Curr. Opin. Neurobiol., 20, 550–556 (2010).PubMedCrossRefGoogle Scholar
  95. 95.
    M. Taira, S. Mine, A. Georgopoulos, et al., “Parietal cortex neurons of the monkey related to the visual guidance of hand movement,” Exp. Brain Res., 83, No. 1, 29–36 (1990).PubMedCrossRefGoogle Scholar
  96. 96.
    N. Tsukahara and D. G. Fuller, “Conductance changes during pyramidally induced postsynaptic potentials in red nucleus neurons,” J. Neurophysiol., 32, No. 1, 35–42 (1969).PubMedGoogle Scholar
  97. 97.
    Sh. K. Tyagarajan and J.-M. Fritschy, “GABA receptors, gephyrin and homeostatic synaptic plasticity,” J. Physiol., 588, No. 1, 101–106 (2010).PubMedCrossRefGoogle Scholar
  98. 98.
    G. Vuillon-Cacciuttolo, O. Bosler, and A. Nieoullon, “GABA neurons in the cat red nucleus: a biochemical and immunohistochemical demonstration,” Neurosci. Lett., 52, No. 1, 129–134 (1984).PubMedCrossRefGoogle Scholar
  99. 99.
    D. D. Wang and A. R. Kriegstein, “Defining the role of GABA in cortical development,” J. Physiol., 587, No. 9, 1873–1879 (2009).PubMedCrossRefGoogle Scholar
  100. 100.
    R. S. Waters and H. Asanuma, “Movement of facial muscles following intracortical microstimulation (ICMS) along the lateral branch of the posterior bank of the ansate sulcus, area 5a and 5b in the cat,” Exp. Brain Res., 50, No. 2/3, 459–463 (1983).PubMedGoogle Scholar
  101. 101.
    J. T. Weber and T. C. T. Yin, “Subcortical projections of the inferior parietal cortex (area 7) in the stumtailed monkey,” J. Comp. Neurol., 224, No. 2, 206–230 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Laboratory for the Physiology of the Autonomic Nervous System (Director: Doctor of Biological Sciences L. B. Nersesyan), L. A. Orbeli Institute of PhysiologyNational Academy of Sciences of the Republic of ArmeniaErevanRepublic of Armenia

Personalised recommendations