Skip to main content

Advertisement

Log in

Effects of Activation of TRPM8 Ion Channels on Thermoregulatory Reactions in Cooling

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Animal experiments were performed to study the effects of activation of cold- and menthol-sensitive TRPM8 receptors by menthol on thermoregulatory parameters in thermoneutral conditions and on cooling. Total oxygen consumption was measured, along with expiration of carbon dioxide, the respiratory coefficient, the skin vessel constriction reaction, and contractile muscle activity. Application of menthol in thermoneutral conditions led to increased oxygen consumption and a decrease in the respiratory coefficient which, in the absence of shivering, provides evidence of increased non-contractile thermogenesis and lipolysis. Cooling on the background of activation of the TRPM8 receptor was characterized by decreases in the thresholds of all thermoregulatory reactions with no change in their initiation sequence, along with increases in the metabolic components of emergency thermogenesis, leading to improved maintenance of deep body temperature when environmental cold acts on the body. These results provide evidence for a contribution of TRPM8 ion channels to increased activation of thermoreceptor structures generating afferent signals involved in maintaining metabolism in thermoneutral conditions and forming the structure of the efferent response of the body to cold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Kozyreva, “Modulation of the functional properties of cutaneous thermoreceptors,” Neirofiziologiya, 24, No. 5, 542–552 (1992).

    CAS  Google Scholar 

  2. T. V. Kozyreva and L. A. Verkhoglyad, “Functional significance of the dynamic activity of cutaneous cold receptors,” Fiziol. Zh. SSSR, 75, No. 1, 117–123 (1989).

    PubMed  CAS  Google Scholar 

  3. T. V. Kozyreva and L. A. Verkhoglyad, “Cold adaptation and the structure of the thermoregulatory response in slow and rapid cooling,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 11–12, 135–142 (1997).

    CAS  Google Scholar 

  4. T. V. Kozyreva and E. Ya. Tkachenko, “Effects of menthol on temperature sensitivity in humans, Fiziol. Cheloveka, 34, No. 2, 57–62 (2008).

    Google Scholar 

  5. E. Ya. Tkachenko, V. P. Kozaruk, and R. V. Kozyreva, “Effects of modulation of cutaneous thermoreceptors by capsaicin on various measures of thermoregulation in the warm and on cooling,” Byull. Sib. Otd. Ros. Akad. Med. Nauk, 1, 119–122 (2001).

    Google Scholar 

  6. M. C. Almeida, A. A. Steiner, L. G. S. Branco, and A. A. Romanovsky, “Cold behavior as thermoregulatory strategy in systemic inflammation,” Eur. J. Neurosci., 23, 3359–3367 (2006).

    Article  PubMed  Google Scholar 

  7. C. Cabanes, F. Viana, and C. Belmonte, “Differential thermosensitivity of sensory neurons in the guinea pig trigeminal ganglion,” J. Neurophysiol., 90, 2219–2231 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. H. Chuang, E. Prescott, H. Kong, S. Shields, S. Jordt, A. Basbaum, M. Chao, and D. Julius, “Bradykinin and nerve growth factor release the capsaicin receptor from PtdInst(4,5)P2-mediated inhibition,” Nature, 411, 957–962 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. H. Chuang, W. Neuhausser, and D. Julius, “The super cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel,” Neuron, 43, 859–869 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. A. Dhaka, T. J. Earley, J. Watson, and A. Patapoutian, “Visualizing cold spots: TRPM8-expressing sensory neurons and their projections,” J. Neurosci., 28, No. 3, 566–575 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. S. N. Davis, G. E. Goldsmith, R. F. Hellon, and D. Mitchell, “Facial sensitivity to rates of temperature change: neurophysiological psychological evidence from cats and human, “ J. Physiol., 344, No. 1, 135–146 (1983).

    Google Scholar 

  12. S. Jordt, D. McKemy, and D. Julius, “Lessons from peppers and peppermint: the molecular logic of thermoregulation,” Curr. Opin. Neurobiol., 13, No. 1, 1–6 (2003).

    Article  Google Scholar 

  13. E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science, McGraw-Hill, New York (2000).

    Google Scholar 

  14. Y. Karashima, N. Damann, J. Prenen, K. Talavera, A. Segal, T. Voets, and B. Nilius, “Bimodal action of menthol on the transient receptor potential channel TRPA1,” J. Neurosci., 27, No. 37, 9874–9884 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. K. Kobayashi, T. Fukuoka, K. Obata, H. Yamanaka, Y. Dai, A. Tokunaga, and K. Noguchi, “Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors,” J. Comp. Neurol., 493, 596–606 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. T. V. Kozyreva, E. Ya. Tkachenko, and V. P. Kozaruk, “Thermoregulatory responses to cooling before and after the noradrenaline iontophoresis to skin,” J. Therm. Biol., 24, No. 1, 175–183 (1999).

    Article  CAS  Google Scholar 

  17. L. J. Macpherson, A. E. Dubin, M. J. Evans, F. Marr, P. G. Schulz, B. F. Cravatt, and A. Patapoutian, “Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines.” Nature, 445, 541–545 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Yu. Masamoto, F. Kawabata, and T. Fushiki, “Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice,” Biosci. Biotechnol. Biochem., 73, No. 5, 1021–1027 (1990).

    Article  Google Scholar 

  19. D. McKemy, “How cold is it? TRPM3 and TRPA1 in the molecular logic of cold,” Mol. Pain., No. 1, 1–16 (2005).

    Article  Google Scholar 

  20. D. McKemy,W. Neuhausser, and D. Julius, “Identification of a cold receptor reveals a general role for TRP channels in thermosensation,” Nature, 416, 52–58 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. I. B. Mekjavic, A. La Prairie, A. Burke, and B. Lindborg, “Respiratory drive during sudden cold water immersion,” Respir. Physiol., 70, No. 1, 121–130 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. A. Patapoutian, A. Peier, G. Story, and V. Vismanath, “ThermoTRP channels and beyond: mechanisms of temperature sensation,” Neurosci., 4, 529–539 (2003).

    CAS  Google Scholar 

  23. A. Peier, A. Mogrich, A. Hergarden, A. Reeve, D. Andersson, G. Story, T. Earley, I. Gragoni, P. McIntyre, S. Bevan, and A. Patapoutian, “A TRP channel that senses cold stimuli and menthol,” Cell, 108, 705–715 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. G. Reid and M. Flonta, “Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurons,” Neurosci. Lett., 297, 171–174 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. G. Reid and M. Flonta, “Physiology: Cold current in thermoreceptive neurons,” Nature, 413, 480–485 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. G. M. Story, A. M. Peir,A. J. Reeve, S. R. Eid, J. Mosbacher, T. R. Hricik, T. J. Earley, A. C. Hergarde, D. A. Andersson, S. W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian, “ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures,” Cell, 112, 819–829 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. K. Suto and H. Gotoh, “Calcium signaling in cold cells studied in cultured dorsal root ganglion neurons,” Neurosci., 92, 1131–1135 (1999).

    Article  CAS  Google Scholar 

  28. K. Tajino, K. Matsumara, K. Kosada, T. Shibakusa, K. Inoue, T. Fushuki, H. Hosokawa, and S. Kobayashi, “Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 293, R2128–R2135 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. P. Thut, D. Wrigley, and M. Gold, “Cold transduction in rat trigeminal ganglia neurons in vitro,” Neurosci., 119, 1071–1083 (2003).

    Article  CAS  Google Scholar 

  30. E. Ya. Tkachenko, S. V. Lomakina, and T. V. Kozyreva, “Modulating effect of calcium on the cold defence response formation in normotensive and hypertensive rats,” J. Therm. Biol., 30, No. 7, 545–550 (2005).

    Article  CAS  Google Scholar 

  31. F. Viana, E. de la Pena, and C. Belmonte, “Specificity of cold thermotransduction is determined by differential ionic channel expression,” Nature Neurosci., 5, 254–260 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. B. Xiao, A. Dubin, B. Bursulaya,V. Viswanath, T. Jegla, and A. Patapoutian, “Identification of the transmembrane domain five as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels,” J. Neurosci., 28, No. 39, 9640–9651 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kozyreva.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 97, No. 2, pp. 218–226, February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozyreva, T.V., Kozaruk, V.P., Tkachenko, E.Y. et al. Effects of Activation of TRPM8 Ion Channels on Thermoregulatory Reactions in Cooling. Neurosci Behav Physi 42, 654–659 (2012). https://doi.org/10.1007/s11055-012-9617-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9617-8

Keywords

Navigation