Skip to main content

Advertisement

Log in

Fusion of Brain Neurons in Rat Embryos

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Syncytial interneuronal connections in the sensorimotor cortex and caudate nucleus were studied in 20 rats of 14–22 days of intrauterine development. While the development of glial processes was extremely weak, many neuron bodies and their processes were in direct contact with each other. Contacting membranes formed extended and punctate contacts reminiscent of gap and tight junctions. As a result, intercellular clefts showed varicose-type deformation. Hardly detectable membrane pores were seen around contacts, which increased in size to large perforations. The margins of perforations formed a rounded structure consisting of the fused plasmalemmas of adjacent cells. Areas of paired membranes between perforations were fragmented, increasing the number of residual bodies until the neurons fused completely, forming a neuroplasm common to the contacting cells. These results lead to the conclusion that neuron fusion in the cerebral cortex and brainstem nuclei of vertebrates can occur not only in pathology, but also in normal animals at the intrauterine stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolepov, N. I. Pavlovskaya, and N. I. Yakovleva, “Ultrastructure of contacts between paired neurons during the posthypoxic period,” Arkh. Anat., 79, No. 9, 15–24 (1980).

    PubMed  CAS  Google Scholar 

  2. N. N. Bogolepov, N. I. Yakovleva, L. E. Frumkina, and S. K. Koroleva, “Different types of nonspecific intercellular contacts in the developing rat brain,” Arkh. Anat., 40, No. 2, 45–53 (1986).

    Google Scholar 

  3. V. F. Ivanov, “Multinucleate cells (formation, structure, biological significance),” Arkh. Anat., 87, No. 12, 80–86 (1984).

    Google Scholar 

  4. A. A. Paltsyn, E. G. Kolokolchikova, N. B. Konstantinova, et al., “Formation of heterokarya as a means of regenerating neurons in postischemic damage to the cerebral cortex in rats,” Byull. Eksperim. Biol. Med., 146, No. 10, 407–410 (2008).

    Google Scholar 

  5. A. A. Paltsyn, N. B. Konstantinova, G. A. Romanov, et al., “The role of cell fusion in the physiological and reparative regeneration of the cerebral cortex,” Byull. Eksperim. Biol., 148, No. 11, 580–583 (2009).

    Google Scholar 

  6. N. V. Samosudova, N. P. Larionova, and P. L. Chailakhyan, “Pathological fusion of frog cerebellar cells in the presence of L-glutamate in vivo,” Dokl. Ros. Akad. Nauk., 336, No. 3, 406–409 (1994).

    CAS  Google Scholar 

  7. V. V. Semchenko, N. N. Bogolepov, and S. S. Stepanov, “Synaptic plasticity of the neocortex in white rats in diffuse-focal brain damage,” Morfologiya, 128, No. 4, 76–81 (2005).

    CAS  Google Scholar 

  8. O. S. Sotnikov, L. I. Archakova, S. A. Novakovskaya, and I. A. Solovieva, “The question of the syncytical connections of neurons in pathology,” Byull. Eksperim. Biol., 147, No. 2, 207–210 (2009).

    Google Scholar 

  9. O. S. Sotnikov, S. A. Novakovskaya, and I. A. Solovieva, “Syncytial perforations of neuronal membranes in human embryos,” Ontogenez, 42, No. 1, 42–52 (2011).

    Google Scholar 

  10. A. B. Uzdenskii, “Controlled necrosis,” Biol. Membrany, 27, No. 1, 7–17 (2010).

    CAS  Google Scholar 

  11. N. E. Yarygin and V. N. Yarygin, Pathogenetic and Adaptive Changes in Neurons [in Russian], Meditsina, Moscow (1973).

    Google Scholar 

  12. J. B. Ackman, F. Siddiqi, R. S. Walikonis, and J. J. LoTurco, “Fusion of microglia with pyramidal neurons after retroviral infection,” J. Neurosci., 26, No. 44, 11413–11422 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. A. Aguzzi, E. F. Wagner, K. O. Netzer, et al., “Human foamy virus proteins accumulate in neurons and induce multinucleated giant cells in the brain of transgenic mice,” Am. J. Pathol., 142, No. 4, 1061–1071 (1993).

    PubMed  CAS  Google Scholar 

  14. M. Alvarez-Dolado, R. Pardal, J. M. Garcia-Verdugo, et al., “Fusion of bone marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes,” Nature, 425, No. 6961, 968–973 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. L. I. Archakova, O. S. Sotnikov, S. A. Novakovskaya, et al., “Syncytial cytoplasmic anastomoses between neurites in caudal mesenteric ganglion cells,” Neurosci. Behav. Physiol., 40, No. 4, 447–450 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. J. S. Bae, H. S. Han, D. H. Youn, et al., “Bone marrow-derived mesenchymal stem cells promote neural networks with functional synaptic transmission after transplantation into mice with neurodegeneration,” Stem Cells, 25, No. 5, 1307–1316 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. J. D. Marotti, S. L. Savitz,W. K. Kim, et al., “Cerebral amyloid angiitis processing to generalized angiitis and leucoencephalitis,” Neuropathol. Appl. Neurobiol., 33, No. 4, 474–479 (2007).

    Article  Google Scholar 

  18. N. M. Paramonova and O. S. Sotnikov, “Cytoplasmic syncytial connections between neuron bodies in the CNS of adult animals,” Neurosci. Behav. Physiol., 40, No. 1, 73–77 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. R. S. Santander, G. M. Cuadrado, and M. R. Sáez, “Exceptions to Cajal’s neuron theory: communicating synapses,” Acta Anat., 132, 74–76 (1988).

    Article  Google Scholar 

  20. O. S. Sotnikov, V. V. Malashko, and G. I. Rybakova, “Fusion of nerve fibers,” Dokl. Biol. Sci., 410, 361–363 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. O. S. Sotnikov, V. V. Malashko, and G. I. Rybakova, “Syncytial coupling of neurons in tissue culture and early ontogenesis,” Neurosci. Behav. Physiol., 38, No. 4, 323–331 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. O. S. Sotnikov, N. M. Paramonova, and L. I. Archakova, “Ultrastructural analysis of interneuronal syncytial perforations,” Cell Biol. Int., 34, No. 4, 361–364 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Sotnikov.

Additional information

Translated from Morfologiya, Vol. 139, No. 2, pp. 18–21, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotnikov, O.S., Frumkina, L.E., Novakovskaya, S.A. et al. Fusion of Brain Neurons in Rat Embryos. Neurosci Behav Physi 42, 594–597 (2012). https://doi.org/10.1007/s11055-012-9606-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9606-y

Keywords

Navigation