Skip to main content
Log in

Synchronization/Desynchronization of Cortical Electrical Activity in the Theta and Alpha Ranges Evoked by Facial Images during Increased Loading on Working Memory

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A cognitive set model to emotional facial expressions was used in healthy adult humans to study evoked synchronization/desynchronization reactions of cortical theta and alpha activity to images of faces during increased loading on working memory (with an additional task consisting of recognizing verbal stimuli). A correlation was seen between behavioral (increased set inertia) and electrophysiological (decreased evoked theta-rhythm synchronization) experimental data. We propose the hypothesis that increases in tonic prestimulus activity of theta potentials during the prestimulus period and suppression of phasic corticohippocampal system activation reactions are among the neural mechanisms decreasing the plasticity of the cognitive function of recognizing emotional facial expressions in humans in conditions of increased loading on working memory. The question of the reciprocal relationships between the two functional systems integrating brain activity – the corticohippocampal and the frontothalamic – in the process of recognizing emotional facial expressions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Kozlov, “Assessment of the significance of the variance characteristics of pre- and poststimulus EEG curves using the chisquared test,” Zh. Vyssh. Nerv. Deyat., 59, No. 2, 281–290 (2009).

    Google Scholar 

  2. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, and I. A. Yakovenko, “The role of working memory in forming visual sets,” Zh. Vyssh. Nerv. Deyat., 52, No. 2, 149–155 (2002).

    CAS  Google Scholar 

  3. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, and I. A. Yakovenko, “Changes in cortical electrical activity on formation of a set in conditions of increased loading on working memory,” Zh. Vyssh. Nerv. Deyat., 54, No. 4, 448–454 (2004).

    CAS  Google Scholar 

  4. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, I. A. Yakovenko, and M. L. Ashkinazi, “The role of the context of cognitive activity in the conservatism of unconscious visual sets,” Zh. Vyssh. Nerv. Deyat., 55, No. 5, 633–638 (2005).

    CAS  Google Scholar 

  5. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, N. E. Petrenko, M. L. Ashkinazi, and I. A. Yakovenko, “Relationship between the plasticity of a set to an emotional facial expression and the loading on working memory,” Zh. Vyssh. Nerv. Deyat., 58, No. 1, 42–50 (2008).

    Google Scholar 

  6. E. A. Kostandov and E. A. Cheremushkin, “Dependence of the spatial synchronization of prestimulus cortical electrical activity on the loading on working memory during recognition of an emotional facial expression,” Zh. Vyssh. Nerv. Deyat., 60, No. 2, 166–174 (2010).

    CAS  Google Scholar 

  7. E. A. Kostandov, E. A. Cheremushkin, and M. K. Kozlov, “Evoked synchronization/desynchronization of cortical electrical activity in response to facial stimuli during formation of a set to an emotionally negative expression,” Zh. Vyssh. Nerv. Deyat., 59, No. 1, 22–32 (2009).

    Google Scholar 

  8. N. S. Kurova, E. A. Cheremushkin, and M. L. Ashkinazi, “EEG spectral characteristics at different stages of an unconscious visual set at two levels of motivation,” Zh. Vyssh. Nerv. Deyat., 52, No. 4, 406–416 (2002).

    CAS  Google Scholar 

  9. N. S. Kurova, E. A. Cheremushkin, and M. L. Ashkinazi, “EEG coherence during realization of an unconscious visual set in conditions of increased motivation of subjects,” Zh. Vyssh. Nerv. Deyat., 53, No. 6, 705–711 (2003).

    CAS  Google Scholar 

  10. D. N. Uznadze, Experimental Basis of Set Psychology. Experimental studies in Set Psychology [in Russian], Georgian SSR Academy of Sciences Press (1958), pp. 5–126.

  11. M. Bastiansen and P. Hagoort, “Event-induced theta responses as a window on the dynamics of memory,” Cortex, 39, 967–992 (2003).

    Article  Google Scholar 

  12. J. B. Caplan, J. R. Madsen, A. Schulze-Bonhage, R. Aschenbrenner-Scheibe, E. L. Newman, and M. L. Kahana, “Human theta-oscillations related to sensorimotor integration and spatial learning,” J. Neurosci., 23, No. 11, 4726–4736 (2003).

    PubMed  CAS  Google Scholar 

  13. M. D’Esposito, J. A. Detre, D. C. Alsop, R. K. Shin, S. Atlas, and M. Grossman, “The neural basis of the central executive systems of working memory,” Nature, 378, 279–281 (1995).

    Article  PubMed  Google Scholar 

  14. P. Ekman and W. V. Friesen, Pictures of Facial Affect, Consultants Psychol. Press, Palo Alto (1976).

    Google Scholar 

  15. A. Gevins and E. Smith, “Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style,” Cereb. Cortex, 10, No. 9, 829–839 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. P. S. Goldman-Rakic, “Space and time in the mental universe,” Nature, 386, 559–560 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. S. Guderian and E. Duzel, “Induced theta oscillations mediate largescale synchrony with mediotemporal areas during recollection in humans,” Hippocampus, 15, No. 7, 901–912 (2005).

    Article  PubMed  Google Scholar 

  18. M. E. Hasselmo and H. Eichenbaum, “Hippocampus mechanisms for the context-dependent retrieval of episodes,” Neural Networks, 18, 1172–1190 (2005).

    Article  PubMed  Google Scholar 

  19. I. G. Kirk and J. C. Mackay, “The role of theta-range oscillations in synchronizing and integrating activity in distributed mnemonic networks,” Cortex, 39, 993–1008 (2003).

    Article  PubMed  Google Scholar 

  20. W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Rev., 29, 169–195 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillation: The inhibition-timing hypothesis,” Brain Res. Rev., 53, 63–88 (2007).

    Article  PubMed  Google Scholar 

  22. W. Klimesch, B. Schack, and P. Sauseng, “The functional significance of theta and upper alpha oscillations,” Exp. Psychol., 52, No. 2, 99–108 (2005).

    Article  PubMed  Google Scholar 

  23. G. Rainer,W. F. Asaad, and E. K. Miller, “Memory fields of neurons in the primate prefrontal cortex,” Proc. Natl. Acad. Sci. USA, 95, 15008–15013 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. J. Rissman, A. Gazzaley, and M. D’Esposito, “Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load,” Cereb. Cortex, 18, No. 7, 1618–1629 (2008).

    Article  PubMed  Google Scholar 

  25. H. J. Yoon, N. H. Joshua, and M. D’Esposito, “Segregation of function in the lateral prefrontal cortex during visual object working memory,” Brain Res., 1184, 217–225 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kostandov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 61, No. 1, pp. 35–46, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostandov, E.A., Cheremushkin, E.A. Synchronization/Desynchronization of Cortical Electrical Activity in the Theta and Alpha Ranges Evoked by Facial Images during Increased Loading on Working Memory. Neurosci Behav Physi 42, 495–504 (2012). https://doi.org/10.1007/s11055-012-9591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9591-1

Keywords

Navigation