M. V. Bilenko, Ischemic and Reperfusion Damage to Organs [in Russian], Meditsina, Moscow (1989).
Google Scholar
A. G. Portnichenko, M. I. Vasilenko, and A. A. Moibenko, “The effects of acute hypoxic hypoxia on the induction of nitric oxide synthase in rats,” Fiziol. Zh., 49, No. 3, 47–49 (2003).
CAS
Google Scholar
A. G. Portnichenko, M. I. Vasilenko,V. I. Portnichenko, and A. A. Moibenko, “Acute hypoxic hypoxia as an inducer of delayed cardioprotection in rats,” in: Hypoxia, Automated Analysis of Hypoxic States. Collected Studies [in Russian], A. Z. Kolchinskaya (ed.), Nalchik, Moscow (2005), Vol. 1, pp. 185–190.
A. G. Portnichenko, K. V. Rozova, M. I. Vasilenko, and O. O. Moibenko, “Age characteristics of ultrastructural changes in the myocardium in hypoxic preconditioning and ischemia-reperfusion of isolated rat hearts,” Fiziol. Zh., 53, No. 4, 27–34 (2007).
Google Scholar
A. G. Portnichenko, M. I. Vasilenko, and O. O. Moibenko, “The role of potassium channels in the effector mechanisms of cardioprotection in late preconditioning of the rat heart,” Patologiya, 5, No. 3, 61–62 (2008).
Google Scholar
A. G. Portnichenko, “The phenomenon of late preconditioning of the myocardium or phenotypic cardioprotection,” in: Endogenous Mechanisms of Cardioprotection as the Basis of the Pathogenetic Therapy of Heart Diseases [in Russian], A. A. Moibenko, V. E. Dosenko, and A. N. Parkhomenko (eds.), NVP Vidavnitstvo “Naukova Dumka,” Ukrainian National Academy of Sciences, Kiev (2008), pp. 305–331.
A. Aries, P. Paradis, C. Lefebvre, R. J. Schwartz, and M. Nemer, “Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity,” Proc. Natl. Acad. Sci. USA, 101, No. 18, 6975–6980 (2004).
PubMed
CAS
Article
Google Scholar
M. A. Arstall, Y. Z. Zhao, L. Hornberger, S. P. Kennedy, R. A. Buchholz, R. Osathamondh, and R. A. Kelly, “Human ventricular myocytes in vitro exhibit both early and delayed preconditioning responses to simulated ischemia,” J. Mol. Cell. Cardiol., 30, No. 5, 1019–1025 (1998).
PubMed
CAS
Article
Google Scholar
K. Ban, A. J. Cooper, S. Samuel, A. Bhatti, M. Patel, S. Izumo, J. M. Penninger, P. H. Backx, G. Y. Oudit, and R. G. Tsushima, “Phosphatidyinositol 3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning,” Circ. Res., 103, No. 6, 643–653 (2008).
PubMed
CAS
Article
Google Scholar
S. Banerjee, X. L. Tank, Y. Qiu, H. Takano, S. Manchikalapudi, B. Dawn, G. Shirk, and R. Bolli, “Nitroglycerin induces late preconditioning against myocardial stunning via a PKC-dependent pathway,” Am. J. Physiol., 277, No. 6, Part 2, H2488–H2494 (1999).
PubMed
CAS
Google Scholar
P. C. Beguin, M. Joyeux-Faure, D. Godin-Ribuot, P. Lévy, and C. Ribuot, “Acute intermittent hypoxia improves rat myocardium tolerance to ischemia,” J. Appl. Physiol., 99, No. 3, 1064–1069 (2005).
PubMed
CAS
Article
Google Scholar
P. C. Beguin, E. Belaidi, D. Godin-Ribuot, P. Lévy, and C. Ribuot, “Intermittent hypoxia-induced delayed cardioprotection is mediated by PKC and triggered by p38 MAP kinase and Erk1/2,” J. Mol. Cell. Cardiol., 42, No. 2, 343–351 (2007).
PubMed
CAS
Article
Google Scholar
I. J. Benjamin and D. R. McMillan, “Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease,” Circ. Res., 83, No. 2, 117–132 (1998).
PubMed
CAS
Google Scholar
M. Bernaudin and F. R. Sharp, “Methods to detect hypoxia-induced ischemic tolerance in the brain,” Meth. Enzymol., 381, 399–416 (2004).
PubMed
CAS
Article
Google Scholar
W. M. Bernhardt, C. Warnecke, C. William, T. Tanaka, M. S. Wiesener, and K. U. Eckardt, “Organ protection by hypoxia and hypoxia-inducible factors,” Meth. Enzymol., 435, 221–245 (2007).
PubMed
CAS
Google Scholar
I. Bin-Jaliah, H. I. Ammar, D. P. Mikhailidis, M. A. Dallak, F. H. Al-Hashem, M. A. Haidara, H. Z. Yassin, A. A. Bahnasi, L. A. Rashed, and E. R. Isenovic, “Cardiac adaptive responses after hypoxia in an experimental model,” Angiology, 61, No. 2, 145–156 (2010).
PubMed
CAS
Article
Google Scholar
Z. Cai, D. J. Manalo, G. Wei, E. R. Rodriguez, K. Fox-Talbot, H. Lu, J. L. Zweier, and G. L. Semenza, “Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury,” Circulation, 108, No. 1, 79–85 (2003).
PubMed
CAS
Article
Google Scholar
Z. Cai, H. Zhong, M. Bosch-Marce, K. Fox-Talbot, L. Wang, C. Wei, M. A. Trush, and G. L. Semenza, “Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α,” Cardiovasc. Res., 77, No. 3, 463–470 (2008).
PubMed
CAS
Article
Google Scholar
F. Charron, G. Tsimiklis, M. Arcand, L. Robitaille, Q. Liang, J. D. Molkentin, S. Meloche, and M. Nemer, “Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA,” Genes Dev., 15, No. 20, 2702–2719 (2001).
PubMed
CAS
Article
Google Scholar
H. P. Chen, M. He,Y. L. Xu, Q. R. Huang, G. H. Huang, G. H. Zeng, D. Liu, and Z. P. Liao, “Anoxic preconditioning up-regulates 14-3-3 protein expression in neonatal rat cardiomyocytes through extracellular signal-regulated kinase 1/2,” Life Sci., 81, No. 5, 372–379 (2007).
PubMed
CAS
Article
Google Scholar
Y. Y. Chen and Q. Xia, “Evaluation of Gi/o protein signal transduction pathway in cardioprotection of hypoxic preconditioning,” Acta physiol. Sin., 52, No. 2, 93–97 (2000).
CAS
Google Scholar
D. V. Cuong, N. Kim, J. B. Youm, H. Joo, M. Warda, J. W. Lee, W. S. Park, T. Kim, S. Kang, H. Kim, and J. Han, “Nitric oxidecGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K + channels in rat hearts,” Am. J. Physiol. Heart Circ. Physiol., 290, No. 5, H1808–H1817 (2006).
PubMed
Article
Google Scholar
B. Dawn and R. Bolli, “Role of nitric oxide in myocardial preconditioning,” Ann. N.Y. Acad. Sci., 962, 18–41 (2002).
PubMed
CAS
Article
Google Scholar
T. Eckjle, D. Köhler, R. Lehmann, K. El Kasmi, and H. K. Eltzschig, “Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning,” Circulation, 118, No. 2, 166–175 (2008).
Article
Google Scholar
K. Z. Gong, Z. G. Zhang, A.H. Li, Y. F. Huang, P. Bu, F. Dong, and J. Liu, “ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes,” Chin. J. Med., 117, No. 3, 395–400 (2004).
Google Scholar
Y. Honma, M. Tani, M. Takayama, K. Yamamura, and H. Hasegawa, “Aging abolishes the cardioprotective effect of combination heat shock and hypoxic preconditioning in reperfused rat hearts,” Basic Res. Cardiol., 67, No. 6, 489–495 (2002).
Article
Google Scholar
Y. F. Huang, K. Z. Gong, and A. G. Zhang, “Different roles of ERK1/2 and p38 MAPKα/β in cellular signaling during cardiomyocyte anoxia preconditioning,” Acta Physiol. Sin., 55, No. 4, 454–458 (2003).
CAS
Google Scholar
J. D. Jiao, V. Garg, B. Yang, and K. Hu, “Novel functional role of heat shock protein 90 in ATP-sensitive K + channel-mediated hypoxic preconditioning,” Cardiovasc. Res., 77, No. 1, 126–133 (2008).
PubMed
CAS
Article
Google Scholar
A. Kalota, S. E. Shetzline, and A. M. Gewirtz, “Progress in the development of nucleic acid therapeutics for cancer,” Cancer Biol. Ther., 3, No. 1, 4–12 (2004).
PubMed
CAS
Article
Google Scholar
R. Kerkala, S. Pikkarainen, T. Majalahti-Palviainen, H. Tokola, and H. Ruskoako, “Distinct roles of mitogen-activated protein kinase pathways in GATA-4 transcription factor-mediated regulation of B-type natriuretic peptide gene,” J. Biol. Chem., 277, No. 16, 13752–13760 (2002).
Article
Google Scholar
J. Khoury, J. C. Ibla, A. S. Neish, and S. P. Colgun, “Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation,” J. Clin. Invest., 117, No. 3, 703–711 (2007).
PubMed
CAS
Article
Google Scholar
Y. Kim, A. G. Ma, K. Kitta, S. N. Fitch, T. Ideka,Y. Ihara, A. R. Simon, T. Evans, and Y. J. Suzuki, “Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis,” Mol. Pharmacol., 63, No. 2, 368–377 (2003).
PubMed
CAS
Article
Google Scholar
K. Kitta, S. A. Clément, J. Remeika, J. B. Blumberg, and Y. J. Suzuki, “Endothelin-1 induces phosphorylation of GATA-4 transcription factor in the HL-1 atrial-muscle cell line,” Biochem. J., 359, Part 2, 375–380 (2001).
PubMed
CAS
Article
Google Scholar
K. Kitta, R. M. Day, Y. Kim, J. Torregroza, T. Evans, and Y. J. Suzuki, “Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells,” J. Biol. Chem., 278, No. 7, 4705–4712 (2003).
PubMed
CAS
Article
Google Scholar
S. Kobayashi, T. Lackey,Y. Huang, E. Bisping,W. T. Pu, L. M. Boxer, and Q. Liang, “Transcription factor GATA4 regulates BCL2 gene expression in vitro and in vivo,” FASEB J., 20, No. 6, 800–802 (2006).
PubMed
CAS
Google Scholar
F. Kolar, J. Jezková, P. Balková, J. Breh, F. Neckár, F. Novák, O. Nováková, H. Tomásová, M. Srbová, B. Ost’ádal, J. Wilhelm, and J. Herget, “Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic intermittent hypoxia,” Am. J. Physiol. Heart Circ. Physiol., 292, No. 1, H224–H230 (2007).
PubMed
CAS
Article
Google Scholar
G. Kroemer, L. Galluzzi, and C. Brenner, “Mitochondrial membrane permeabilization in cell death,” Physiol. Rev., 87, No. 1, 99–163 (2007).
PubMed
CAS
Article
Google Scholar
J. Kurreck, “Antisense technologies. Improvement through novel chemical modifications,” Eur. J. Biochem., 270, No. 8, 1628–1644 (2003).
PubMed
CAS
Article
Google Scholar
R. D. Lasley, G. M. Anderson, and R. M. Mentzer, “Ischaemic and hypoxic preconditioning enhance postischaemic recovery in the rat heart,” Cardiovasc. Res., 27, No. 4, 565–570 (1993).
PubMed
CAS
Article
Google Scholar
X. Liu, X. Wu, L. Cai, C. Tang, and J. Su, “Hypoxic preconditioning of cardiomyocytes and cardioprotection: phosphorylation of HIF-1α induced by p42/p44 mitogen-activated protein kinases is involved,” Pathophysiology, 9, No. 4, 201–205 (2003).
PubMed
CAS
Article
Google Scholar
L. D. Lukyanova, E. L. Germanova, and R. A. Kopaladze, “Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation,” Bull. Exp. Biol. Med., 147, No. 4, 400–404 (2009).
PubMed
CAS
Article
Google Scholar
S. C. Masters, R. R. Subramanian, A. Truong, H. Yang, K. Fujii, H. Zhang, and H. Fu, “Survival-promoting functions of 14-3-3 proteins,” Biochem. Soc. Trans., 30, No. 4, 360–365 (2002).
PubMed
CAS
Article
Google Scholar
N. Maulik, R. M. Engelman, J. A. Rousou, J. E. Flack, D. Deaton, and D. K. Das, “Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2,” Circulation, 100, No. 10, Supplement, II369–II375 (1999).
PubMed
CAS
Google Scholar
T. Morimoto, K. Hasegawa, T. Kakita, H. Wada, T. Yanazume, and S. Sasayama, “Phosphorylation of GATA-4 is involved in α1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes,” J. Biol. Chem., 275, No. 18, 13721–13726 (2000).
PubMed
CAS
Article
Google Scholar
S. Munro, and H. R. Pelham, “An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein,” Cell, 46, No. 2, 291–300 (1986).
PubMed
CAS
Article
Google Scholar
M. Nojiri, K. Tanonaka, K. Yabe, K. Kawana, T. Iwai, M. Yamane, H. Yoshida, J. Hayashi, and S. Takeo, “Involvement of adenosine receptor, potassium channel and protein kinase C in hypoxic preconditioning of isolated cardiomyocytes of adult rat,” Jap. J. Pharmacol., 80, No. 1, 15–23 (1999).
PubMed
CAS
Article
Google Scholar
M. Ogbi and J. A. Johnson, “Protein kinase Cε interacts with cytochrome oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning,” Biochem. J., 393, Part 1, 191–199 (2006).
PubMed
CAS
Article
Google Scholar
B. Ostadal and F. Kolar, Cardiac Ischemia: from Injury to Protection, Kluwer Academic Publishers, Boston, Dordrecht, London (1999).
Google Scholar
Y. X. Pan, L. Lin, A. J. Ren, H. Chen, C. S. Tang, and W. J. Yuan, “HSP70 and FRP78 induced by endothelin-1 pretreatment enhance tolerance to hypoxia in cultured neonatal rat cardiomyocytes,” J. Cardiovasc. Pharmacol., 44, Supplement 1, S117–S120 (2004).
PubMed
CAS
Article
Google Scholar
Y. X. Pan, A. J. Ren, J. Zheng, W. F. Rong, H. Chen, X. H. Yan, C. Wu, W. J. Yuan, and L. Lin, “Delayed cytoprotection induced by hypoxic preconditioning in cultured neonatal rat cardiomyocytes: role of GRP78,” Life Sci., 81, No. 13, 1042–1049 (2007).
PubMed
CAS
Article
Google Scholar
A. M. Park, H. Nagase, S. Vinod Kumar, and Y. J. Suzuki, “Acute intermittent hypoxia activates myocardial cell survival signaling,” Am. J. Physiol. Heart Circ. Physiol., 29, No. 2, H751–H757 (2007).
Google Scholar
A. G. Portnychenko,V. E. Dosenko,V. I. Portnichenko, and O. O. Moybenko, “Expression of HIF-1α and HIF-3α differentially changed in rat heart ventricles after hypoxic preconditioning,” in : Proceedings of the XXVII European Section Meeting of the ISHR, Athens, Greece, May 28–31, 2008, Medimond Inter. Proc. (2008), pp. 61–64.
S. Rane, M. He, D. Sayed, H. Vashistha, A. Malhotra, J. Sadoshima, D. E. Vatner, S. F. Vatner, and M. Abdellatif, “Downregulation of miR-199a depresses hypoxia-inducible factor-1α and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes,” Circ. Res., 104, No. 7, 879–886 (2009).
PubMed
CAS
Article
Google Scholar
T. Ravingerova, J. E. Løkebø, J. Munch-Ellingsen, R. Sundset, P. Tande, and K. Ytrehus, “Mechanism of hypoxic preconditioning in guinea pig papillary muscles,” Mol. Cell. Biochem., 186, No. 1–2, 53–60 (1998).
PubMed
CAS
Article
Google Scholar
A. Rizvi, X. L. Tang, Y. Qiu, Y. T. Xuan, H. Takano, A. K. Jadoon, and R. Bolli, “Increased protein synthesis is necessary for the development of late preconditioning signal against myocardial stunning,” Am. J. Physiol., 277, No. 3, Part 2, H874–H884 (1999).
PubMed
CAS
Google Scholar
M. Rosenquist, “14-3-3 proteins in apoptosis,” Braz. J. Med. Biol. Res., 36, No. 4, 403–408 (2003).
PubMed
CAS
Article
Google Scholar
G. L. Semenza, “HIF-1: mediator of physiological and pathophysiological responses to hypoxia,” J. Appl. Physiol., 88, No. 4, 1474–1480 (2000).
PubMed
CAS
Google Scholar
G. L. Semenza, P. H. Roth, H. M. Fang, and G. L. Wang, “Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1,” J. Biol. Chem., 269, No. 38, 23757–23763 (1994).
PubMed
CAS
Google Scholar
K. Shinmura,Y. T. Xuan, X. L. Tang, E. Kodani, H. Han,Y. Zhu, and R. Boli, “Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits during the late phase of ischemic preconditioning,” Circ. Res., 90, No. 5, 602–608 (2002).
PubMed
CAS
Article
Google Scholar
K. Shintani-Ishida, M. Nakajima, K. Uemura, and K. Yoshida, “Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78,” Biochem. Biophys. Res. Commun., 345, No. 4, 1600–1605 (2006).
PubMed
CAS
Article
Google Scholar
Y. Shizukuda, R. T. Mallet, S. C. Lee, and H. F. Downey, “Hypoxic preconditioning of ischaemic canine myocardium,” Cardiovasc. Res., 26, No. 5, 534–542 (1992).
PubMed
CAS
Article
Google Scholar
Y. Shizukuda, T. Iwamoto, R. T. Mallet, and H. F. Downey, “Hypoxic preconditioning attenuates stunning caused by repeated coronary artery occlusions in dog heart,” Cardiovasc. Res., 27, No. 4, 559–564 (1993).
PubMed
CAS
Article
Google Scholar
D. Singh, A. Sharma, and M. Singh, “Effect of actinomycin D and cycloheximide on ischemic preconditioning-induced delayed cardioprotective effect in rats,” Indian J. Exp. Biol., 38, No. 10, 982–987 (2000).
PubMed
CAS
Google Scholar
A. Skyschally, P. van Caster, K. Boengler, P. Gres, J. Musiolik, D. Schilawa, R. Schulz, and G. Heusch, “Ischemic postconditioning in pigs: no causal role for RISK activation,” Circ. Res., 104, No. 1, 15–18 (2009).
PubMed
CAS
Article
Google Scholar
L. H. Snoeckx, R. N. Cornelussen, F. A. van Nieuwenhoven, R. S. Reneman, and G. J. Van der Vusse, “Heat shock proteins and cardiovascular pathophysiology,” Physiol. Rev., 81, No. 4, 1461–1497 (2001).
PubMed
CAS
Google Scholar
R. R. Subramanian, S. C. Masters, H. Zhang, and H. Fu, “Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis,” Exp. Cell Res., 271, No. 1, 142–151 (2001).
PubMed
CAS
Article
Google Scholar
H. Y. Sun, N. P. Wang, F. Kerendi, M. Halkos, H. Kin, R. A. Guyton, J. Vinten-Johansen, and Z. Q. Zhao, “Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation intracellular Ca2+ overload,” Am. J. Physiol. Heart Circ. Physiol., 288, No. 4, H1900–H1908 (2005).
PubMed
CAS
Article
Google Scholar
M. Tani, Y. Suganuma, M. Takayama, H. Hasegawa, K. Shinmura, Y. Ebihara, and K. Tamaki, “Low concentrations of adenosine receptor blocker decrease protection by hypoxic preconditioning in ischemic rat hearts,” J. Mol. Cell. Cardiol., 30, No. 3, 617–626 (1998).
PubMed
CAS
Article
Google Scholar
M. Tani, Y. Honma, M. Takayama, H. Hasegawa, K. Shinmura, Y. Ebihara, and K. Tamaki, “Loss of protection by hypoxic preconditioning in aging Fischer 344 rat hearts related to myocardial glycogen content and Na + imbalance,” Cardiovasc. Res., 41, No. 3, 594–602 (1999).
PubMed
CAS
Article
Google Scholar
G. Testoni, S. Cerruti, P. Kade, M. Carregal, A. Varela, and E. A. Savino, “Effects of hypoxic preconditioning on the hypoxic-reoxygenated atria from fed and fasted rats,” J. Physiol. Biochem., 56, No. 4, 321–328 (2000).
PubMed
CAS
Article
Google Scholar
T. Uchiyama, R. M. Engelman, N. Maulik, and D. K. Das, “Role of Akt signaling in mitochondrial survival pathways triggered by hypoxic preconditioning,” Circulation, 109, No. 24, 3042–3049 (2004).
PubMed
CAS
Article
Google Scholar
T. L. Vanden Hoek, L. B. Becker, Z. Shao, C. Li, and P. T. Schumacker, “Reactive oxygen species released from mitochondria during brief hypoxia preconditioning in cardiomyocytes,” J. Biol. Chem., 273, No. 29, 18092–18098 (1998).
PubMed
CAS
Article
Google Scholar
T. L. Vanden Hoek, L. B. Becker, Z. H. Zhao, C. Q. Li, and P. T. Schumacker, “Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion,” Circ. Res., 86, No. 5, 541–548 (2000).
PubMed
CAS
Google Scholar
H. C. Wang, H. F. Zhang, W. Y. Guo, H. Su, K. R. Zhang, Q. X. Li, W. Yan, X. L. Ma, B. L. Lopez, T. A. Christopher, and F. Gao, “Hypoxic preconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation,” Apoptosis, 11, No. 8, 1453–1460 (2006).
PubMed
CAS
Article
Google Scholar
D. Wasserfuhr, S. M. Cetin, J. Yang, P. Freitag, S. Frede, H. Jakob, and P. Massoudy, “Protection of the right ventricle from ischemia and reperfusion by preceding hypoxia,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 378, No. 1, 27–32 (2008).
CAS
Article
Google Scholar
R. A. White, L. L. Dowler, L. M. Pasztor, L. L. Gatson, L. R. Adkison, S. V. Angelonik, and D. B. Wilson, “Assignment of the transcription factor GATA4 gene to human chromosome 8 and mouse chromosome 145: Gata4 is a candidate gene for Ds (disorganization),” Genomics, 27, No. 1, 20–26 (1995).
PubMed
CAS
Article
Google Scholar
X. Wu, X. Liu, X. Zhu, and C. Tang, “Hypoxic preconditioning induces delayed cardioprotection through p38 MAPK-mediated calreticulin upregulation,” Shock, 27, No. 5, 572–577 (2007).
PubMed
CAS
Article
Google Scholar
L. Xi, D. Tekin, E. Gursoy, F. Salloum, J. E. Levasseur, and R. C. Kukreja, “Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia,” Am. J. Physiol. Heart Circ. Physiol., 283, No. 1, H5–H12 (2002).
PubMed
CAS
Google Scholar
F. F. Xu, X. H. Liu, and L. R. Cai, “Role of hypoxia-inducible factor-1α in the prevention of cardiomyocyte injury induced by hypoxic preconditioning,” Acta Physiol. Sin., 56, No. 5, 609–614 (2004).
CAS
Google Scholar
X. M. Yang, Y. Liu, N. Tandon, J. Kambayashi, J. M. Downey, and M. V. Cohen, “Attenuation of infarction in cynomolgus monkeys: preconditioning and postconditioning,” Basic Res. Cardiol., 105, No. 1, 119–128 (2010).
PubMed
Article
Google Scholar
D. M. Yellon and J. M. Downey, “Preconditioning the myocardium: from cellular physiology to clinical cardiology,” Physiol. Rev., 83, No. 4, 1113–1151 (2003).
PubMed
CAS
Google Scholar
J. G. Zhuang, Y. Zhang, and Z. N. Zhou, “Hypoxic preconditioning upregulates KATP channels through activation of protein kinase C in rat ventricular myocytes,” Acta Pharmacol. Sin., 21, No. 9, 845–849 (2000).
PubMed
CAS
Google Scholar
X. M. Zhu, X. H. Liu, L. R. Cai, and F. F. Zu, “Hypoxic preconditioning induces endoplasmic reticulum stress-related cardioprotection mediated by p38 mitogen-activated protein kinase,” Acta Physiol. Sin., 58, No. 5, 463–470 (2006).
CAS
Google Scholar