Skip to main content
Log in

Electrographic Correlates of Actual and Imagined Movements: Spectral Analysis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies on eight essentially healthy volunteers showed that increases in activation levels were seen, particularly in the central areas of the cortex, during the actual performance of movements, these being accompanied by decreases in spectral power in alpha and beta frequencies. The EEG simultaneously showed increases in power in the gamma frequencies, which were most marked in in the parietal-occipital leads of the left hemisphere. Mental representations of the same movements were accompanied by additional activation of the frontal, temporal, and parietal-occipital areas, along with more marked increases in power in the gamma frequencies. A number of electrophysiological phenomena associated with the specific features of the movements performed were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Aslanyan, Effects of Individual Typological Characteristics on the Dynamics of the Functional State in Humans in Conditions of Monotonous Activity [in Russian], Author’s Abstract of Master’s Thesis in Biological Sciences, Rostov State University, Rostov-on-Don (2002).

  2. L. V. Varshavskaya, Bioelectrical Activity in the Human Brain during Continuous, Prolonged, and Stressful Activity [in Russian], Author’s Abstract of Master’s Thesis in Biological Sciences, Rostov State University, Rostov-on-Don (1996).

  3. V. N. Dumenko, High-Frequency Components of the EEG and Operant Learning [in Russian], Nauka, Moscow (2006).

    Google Scholar 

  4. G. A. Ivanitskii, R. A. Naumov, and A. M. Ivanitskii, “Techniques for identifying the types of mentally performed drawing operations using the electroencephalogram,” Technol. Zhiv. Sistem., 4, No. 5–6, 20–28 (2007).

    Google Scholar 

  5. V. N. Kiroi, Functional State of the Human Brain during Intellectual Activity [in Russian], Author’s Abstract of Master’s Thesis in Biological Sciences, Rostov State University, Rostov-on-Don (1990).

  6. V. N. Kiroi, Mechanisms of Formation of the Functional State in Humans [in Russian], Rostov State University, Rostov-on-Don (1991).

  7. V. N. Kiroi and E. V. Aslanyan, “Individual resistance to monotony factors and its reflection in the EEG,” Zh. Vyssh. Nerv. Deyat., 56, No. 1, 38–46 (2006).

    CAS  Google Scholar 

  8. V. N. Kiroi and E. I. Belova, “Mechanisms of formation and the role of oscillatory activity in neuron populations in the systems activity of the brain,” Zh. Vyssh. Nerv. Deyat., 50, No. 2, 179–191 (2000).

    CAS  Google Scholar 

  9. M. I. Lednova, Psychophysiological and Electrophysiological Indicators of Brain Activity during Mental Tiring in Monotonous Activity [in Russian], Author’s Abstract of Master’s Thesis in Biological Sciences, Rostov State University, Rostov-on-Don (1994).

  10. L. P. Pavlova and A. F. Romenenko, A Systems Approach to Psychophysiological Studies of the Human Brain [in Russian], Nauka, Leningrad (1988).

    Google Scholar 

  11. E. O. Altenmüller and C. Gerloff, “Psychophysiology and the EEG,” in: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, E. Niedermeyer and F. H. Lopes da Silva, (eds.), Williams and Wilkins, Baltimore (1999), pp. 637–655.

    Google Scholar 

  12. C. W. Anderson, E. A. Stolz, and S. Shamsunder, “Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks,” IEEE trans. Biomed. Eng., 45, 277–286 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. B. Blankertz, G. Dornhege, M. Kraudelat, K.-R. Müller, V. Kunzman, F. Losch, and G. Curio, “The Berlin brain–computer interface: EEG-based communication without subject training,” IEEE Trans. Rehabil. Eng., 14, No. 2, 147–152 (2006).

    Article  Google Scholar 

  14. E. A. Curran and M. J. Stokes, “Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems,” Brain Cogn., 51, 326–336 (2003).

    Article  PubMed  Google Scholar 

  15. B. H. Dobkin, “Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation,” J. Physiol., 579, No. 3, 637–642 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. G. Dornhege, J. R. Millán, T. Hinterberger, D. McFarland, and K. R. Müller, Toward Brain–Computer Interfacing, MIT Press, Cambridge, MA (2007).

    Google Scholar 

  17. S. P. Levine, J. E. Higgins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, E. A. Passaro, M. M. Rohde, and D. A. Ross, “Identification of electrocorticogram patterns as a basis for direct brain interface,” J. Clin. Neurophysiol., 16, 439–447 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, “A direct brain interface based on event-related potentials,” IEEE Trans. Rehabil. Eng., 8, 180–185 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. D. J. McFarland, L. A. Miner, T. M. Vaughan, and J. R. Wolpaw, “Mu and beta rhythm topographies during motor imagery and actual movement,” Brain Topogr., 3, 177–186 (2000).

    Article  Google Scholar 

  20. J. R. Millán, “Brain-computer interfaces,” in: Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA (2002), pp. 178–181.

  21. G. Pfurtscheller, “EEG event-related desynchronization (ERD) and event-related synchronization (ERS),” in: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, E. Niedermeyer and F. H. Lopes da Silva (eds.), Williams and Wilkins, Baltimore, MD (1999), pp. 958–967.

    Google Scholar 

  22. G. Pfurtscheller and F. H. Lopes da Silva, “Functional meaning of event-related desynchronization (ERD) and synchronization (ERS). Event-related desynchronization,” in: Handbook of Brain Theory and Neural Networks, Elsevier, Amsterdam (1999), Revised series, Vol. 6, pp. 51–63.

  23. G. Pfurtscheller and C. Neuper, “Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements,” Neuroreport, 3, No. 12, 1057–1060 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, “EEGbased discrimination between imagination of right and left hand movement,” EEG Clin. Neurophysiol., 103, 642–651 (1997).

    Article  CAS  Google Scholar 

  25. C. Tallon-Baudry, O. Bertrand, F. Peronnet, J. Pernier, “Induced gamma-band activity during the delay of the visual short-term memory task,” J. Neurosci., 18, No. 11, 4244–4254 (1998).

    PubMed  CAS  Google Scholar 

  26. J. R. Wolpaw, N. Birbaumer, W. J. Neetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, “Brain–computer interface technology: a review of the first international meeting,” IEEE Trans. Rehabil. Eng., 8, 161–163 (2000).

    Google Scholar 

  27. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clin. Neurophysiol., 113, No. 6, 767–791 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kiroi.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 60, No. 5, pp. 525–533, September–October, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiroi, V.N., Vladimirskii, B.M., Aslanyan, E.V. et al. Electrographic Correlates of Actual and Imagined Movements: Spectral Analysis. Neurosci Behav Physi 42, 21–27 (2012). https://doi.org/10.1007/s11055-011-9527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9527-1

Keywords

Navigation