Neuroscience and Behavioral Physiology

, Volume 41, Issue 9, pp 920–927 | Cite as

Effects of Neural Stem Cell Transplantation on the Recovery of CNS Functions in Rats with Cortical Stroke

  • A. I. Volkov
  • S. V. Lebedev
  • I. V. Viktorov
  • E. P. Starykh
  • E. A. Savchenko
  • N. F. Grinenko
  • I. P. Lazarenko
  • V. P. Chekhonin

Ischemic stroke was modeled in white mongrel rats by removing surface vessels from the sensorimotor zone of the cortex. Preparations of neuron progenitor cells, i.e., rat embryo nervous tissue cells and human neural stem cells from the olfactory epithelium, and adult rat differentiated fibroblast preparations (cell controls) were transplanted at the perimeter of the area from which vessels were removed. Vital stainlabeled transplanted cells retained viability in the brain parenchyma for at least 16 days. Studies of impairments of the motor functions of the contralateral forepaw for eight weeks showed that only rats into which embryo nervous tissue was transplanted showed stable and significant (p < 0.05) improvements in performance in the cylinder test and the swimming test as compared with untreated animals and cell controls. The greatest differences in relative measures (efficacy) was 25% by the end of the experiment. There were no significant differences in the results of the whiskers test. This methodological approach expands studies of the mechanisms of the therapeutic actions of neural stem cells in stroke.


neural stem cells ischemic stroke forepaw motor functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. P. Liu, M. K. Baskaya, et al., “The potential of neural stem cells to repair stroke-induced brain damage,” Acta Neuropathol., 117, No. 5, 469–480 (2009).PubMedCrossRefGoogle Scholar
  2. 2.
    O. Y. Bang, J. S. Lee, P. H. Lee, and G. Lee, “Autologous mesenchymal stem cell transplantation in stroke patients,” Ann. Neurol., 57, No. 6, 874–882 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Kondziolka, G. K. Steinberg, L. Wechsler, et al., “Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial,” J. Neurosurg., 103, No. 1, 38–45 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    S. T. Carmichael, “Cellular and molecular mechanisms of neural repair after stroke: Making waves,” Ann. Neurol., 59, 735–742 (2006).PubMedCrossRefGoogle Scholar
  5. 5.
    R. J. Nudo, B. M. Wise, F. SiFuentes, and G. W. Milliken, “Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct,” Science, 272, 1791–1794 (1996).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Schiene, C. Bruehl, K. Zilles, et al., “Neuronal hyperexcitability and reduction of GABAA receptor expression in the surround of cerebral photothrombosis,” J. Cereb. Blood Flow Metab., 16, 906–914 (1996).PubMedCrossRefGoogle Scholar
  7. 7.
    R. P. Stroemer, T. A. Kent, and C. E. Hulsebosch, “Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats,” Stroke, 26, 2135–2144 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    T. M. Bliss, S. Kelly, A. K. Shah, et al., “Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior,” J. Neurosci. Res., 83, 1004–1014 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    A. U. Hicks, C. L. MacLellan, G. A. Chernenko, and D. Corbett, “Long-term assessment of enriched housing and subventricular zone derived cell transplantation after focal ischemia in rats,” Brain Res., 1231, 103–112 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    A. U. Hicks, K. Hewlett, V. Windle, et al., “Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke,” Neurosci., 146, 31–40 (2007).CrossRefGoogle Scholar
  11. 11.
    C. L. Beites, S. Kawauchi, C. E. Crocker, and A. L. Calof, “Identification and molecular regulation of neural stem cells in the olfactory epithelium,” Exp. Cell Res., 19, 3309–3316 (2005).Google Scholar
  12. 12.
    L. I. Volkov, S. V. Lebedev, E. P. Starykh, et al., “Post-stroke neurological impairments in rats with functional asymmetry of the hemispheres of the brain,” Zh. Nevrol. Psikhiat., 100, No. 9, 2 (2000).Google Scholar
  13. 13.
    C. Betaneur, P. N. Neveu, and M. Le Moal, “Strain and sex differences in the degree of paw preference in mice,” Behav. Brain Res., 45, 97–101 (1991).CrossRefGoogle Scholar
  14. 14.
    I. V. Viktorov, E. A. Savchenko, and V. P. Chekhonin, “Spontaneous neural differentiation of stem cells in human olfactory epithelium cultures,” Klet. Tekhnol. Biol. Med., No. 4, 183–188 (2007).Google Scholar
  15. 15.
    Y. Y. Wu, T. Mujtaba, and M. R. Rao, “Isolation of stem and precursor cells from fetal tissue,” Meth. Mol. Biol., 198, No. 1, 29–39 (2002).Google Scholar
  16. 16.
    B. Kolb, C. Morshead, C. Gonzalez, et al., “Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats,” J. Cereb. Blood Flow Metab., 27, 983–997 (2007).PubMedGoogle Scholar
  17. 17.
    S. L. Minger, A. Ekonomou, E. M. Carta, et al., “Endogenous neurogenesis in the human brain following cerebral infarction,” Regen. Med., 2, No. 2, 69–74 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    C. T. Ekdahl, J. H. Claasen, S. Bonde, et al., “Inflammation is detrimental for neurogenesis in adult brain,” Proc. Natl. Acad. Sci. USA, 100, 13632–13637 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    Y. Li, J. Chen, L. Wang, et al., “Treatment of stroke in rat with intracarotid administration of marrow stromal cells,” Neurology, 56, No. 12, 1666–1672 (2001).PubMedGoogle Scholar
  20. 20.
    M. M. Daadi, A. S. Davis, A. Arac, et al., “Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury,” Stroke, 41, No. 3, 516–523 (2010).PubMedCrossRefGoogle Scholar
  21. 21.
    S. T. Lee, K. Chu, K. H. Jung, et al., “Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke,” Brain, 131, No. 3, 616–629 (2008).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Kelly, T. M. Bliss, A. K. Shah, et al., “Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex,” Proc. Natl. Acad. Sci. USA, 101, 11839–11844 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Chen, Y. Li, L. Wang, et al., “Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats,” Stroke, 32, No. 4, 1005–1011 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    J. Chen, P. R. Sanberg, Y. Li, et al., “Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats,” Stroke, 32, No. 11, 2682–2688 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Haas, N. Weidner, and J. Winkler, “Adult stem cell therapy in stroke,” Curr. Opin. Neurol., 18, 59–64 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    L. R. Zhao, W. M. Duan, M. Reyes, et al., “Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats,” Exp. Neurol., 174, 11–20 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Hanabusa, N. Nagaya, T. Iwase, et al., “Adrenomedullin enhances therapeutic potency of mesenchymal cells after experimental stroke in rats,” Stroke, 36, No. 4, 853–858 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    N. Ikeda, M. Nonoguchi, M. Z. Zhao, et al., “Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neural outcome after transient focal cerebral ischemia in rats,” Stroke, 36, No. 12, 2725–2730 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Li, J. Chen, and M. Chopp, “Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats,” J. Neurol. Sci., 193, 137–146 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    C. V. Borlongan, M. Hadman, C. D. Sanberg, and P. R. Sanberg, “Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke,” Stroke, 35, No. 10, 2385–2389 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    M. A. Christie and J. C. Dalrymple-Alford, “Behavioural consequences of frontal cortex grafts and enriched environments after sensorimotor cortex lesions,” J. Neurol. Transplant Res., 5, 199–210 (1995).Google Scholar
  32. 32.
    J. Plumet, A. Ebrahimi, J. Guitet, and M. Roger, “Partial recovery of skilled forelimb reaching after transplantation of fetal cortical tissue in adult rats with motor cortex lesions: anatomical and functional aspects,” Res. Neurol. Neurosci., 6, 9–27 (1993).Google Scholar
  33. 33.
    B. Mattsson, J. S. Sørensen, J. Zimmer, and B. B. Johnson, “Neural grafting to experimental neocortical infarcts improves behavioral outcomes and reduces thalamic atrophy in rats housed in enriched but not in standard environments,” Stroke, 28, No. 6, 1225–1231, discussion 1231–1232 (1997).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Grabowski, P. Brundin, and B. B. Johansson, “Fetal neocortical grafts implanted in hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain,” Exp. Neurol., 116, 105–121 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    M. Grabowski, P. Brundin, and B. B. Johansson, “Functional integration of cortical grafts placed in brain infarcts of rats,” Ann. Neurol., 34, 362–368 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Grabowski, B. B. Johansson, and P. Brundin, “Neocortical grafts placed in the infarcted brain of adult rats: few or no efferent fibers grow from transplant to host,” Exp. Neurol., 134, 273–276 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • A. I. Volkov
    • 1
    • 2
  • S. V. Lebedev
    • 2
  • I. V. Viktorov
    • 2
  • E. P. Starykh
    • 2
  • E. A. Savchenko
    • 2
  • N. F. Grinenko
    • 2
  • I. P. Lazarenko
    • 2
  • V. P. Chekhonin
    • 1
    • 2
  1. 1.MoscowRussia
  2. 2.MoscowRussia

Personalised recommendations