Skip to main content
Log in

Changes in Evoked Potentials on Increases in the Difficulty of Visual Searches in Humans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Monopolar evoked potentials (EP) in the frontal, parietal, temporal, and occipital leads in 16 young healthy subjects were analyzed during visual searches of increasing difficulty. Increases in the complexity of the visual search and addition of “noise” to visual stimuli added significant difficulty to the image recognition task, which was reflected in increases in search times and errors. Correlation of changes in EP and search parameters was seen mainly in the frontal leads: there were significant positive relationships between the N2 and P4 components and the SN–SP difference wave on the one hand and search difficulty on the other; there was a negative relationship with the P3 component, probably due to an increase in the duration and amplitude of the preceding N2 component. The N2 and P4 components were most marked in the frontal leads. We suggest that these data provide evidence of increasing dominance of frontal structures in the attention control system as the visual task increases in difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Baranov-Krylov, V. T. Shuvaev, and I. E. Kanunikov, “Characteristics of activation in the parietal areas of the cortex in humans in different types of visual attention,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 2, 176–190 (2006).

    Google Scholar 

  2. I. N. Baranov-Krylov and A. P. Astashchenko, “Characteristics of visual searches and evoked potentials in the extrastriate areas of the cortex in humans,” Ros. Fiziol. Zh. im. I. M. Sechenova, 93, No. 9, 1001–1011 (2007).

    CAS  Google Scholar 

  3. I. Krylov, “Factors affecting endogenous evoked potentials in humans,” Ros. Fiziol. Zh. im. I. M. Sechenova, 81, No. 8, 176–180 (1995).

    CAS  Google Scholar 

  4. A. R. Luriya, Basic Neuropsychology [in Russian], Moscow State University Press, Moscow (1973).

    Google Scholar 

  5. S. Asenbaum, W. Long, A. Edkher, G. Lindinger, and L. Deecke, “Frontal DC potentials in auditory selective attention,” EEG Clin. Neurophysiol., 82, No. 6, 469–477 (1992).

    Article  CAS  Google Scholar 

  6. D. E. Broadbent, “Stimulus set and response set: two kinds of selective attention,” in: Attention: Contemporary Theory and Analysis, D. I. Mostofsky (ed.), Appleton-Century-Crofts, New York (1970), pp. 51–60.

    Google Scholar 

  7. M. Bar, “A cortical mechanism for triggering top-down facilitation in visual object recognition,” J. Cogn. Neurosci., 15, No. 4, 601–609 (2003).

    Article  Google Scholar 

  8. C. Buchel and K. J. Friston, “Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI,” Cereb. Cortex, 7, No. 8, 768–780 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. M. Cheal and D. R. Lyon, “Attention in visual search: multiple search classes,” Perception Psychophysics, 52, No. 2, 113–138 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. M. Corbetta, “Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems?” Proc. Natl. Acad. Sci. USA, 95, No. 3, 831–838 (1988).

    Article  Google Scholar 

  11. M. P. Deiber, S. P. Wise, M. Honda, M. J. Catalan, J. Grafman, and M. Hallett, “Frontal and parietal networks for conditional motor learning: a positron emission tomograph study,” J. Neurophysiol., 78, No. 2, 977–991 (1997).

    PubMed  CAS  Google Scholar 

  12. R. Desimone and L. Ungerleider, “Neural mechanisms of visual processing in monkeys,” in: Handbook of Neurophysiology, F. Boller and J. Grafman (eds.), Elsevier, Amsterdam (1989), Vol. 2, pp. 267–299.

    Google Scholar 

  13. J. E. Desmedt and J. Debecker, “Wave-form and neural mechanism of the decision P350,” EEG Clin. Neurophysiol., 47, No. 6, 648–670 (1970).

    Article  Google Scholar 

  14. J. Duncan and G. W. Humphreys, “Visual search and similarity,” Psychol. Rev., 96, No. 3, 433–458 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. M. A. Goodale, “Vision for perception and vision for action in the primate brain,” Novartis Found. Symp., 218, 21–34, Discussion, 34–39 (1998).

  16. E. Haline, S. Kutas, and M. Kutas, “Neurophysiologic evidence for the time course of activation of global shape, part, and local contour representations during visual object categorization and memory,” J. Cogn. Neurosci., 19, No. 5, 734–749 (2007).

    Article  Google Scholar 

  17. K. M. Heilman, E. Valenstein, and M. E. Goldberg, “Attention: behavior and neural mechanisms,” in: Handbook of Physiology. Section 1: The Nervous System, V. B. Mountcastle, F. Plum, S. R. Geiger (eds.), American Physiology Society, Bethesda, Maryland (1987), Vol. 5, No. 1, pp. 461–481.

  18. S. Hillyard and T. W. Picton, “Electrophysiology of cognition,” Handbook of Physiology. Section 1: The Nervous System, American Physiology Society, Bethesda, Maryland (1987), Vol. 5, No. 2, p. 519.

  19. E. Jhodo and Y. Kayama, “Relation of negative ERP component to response inhibition in a go/no-go task,” EEG Clin. Neurophysiol., 82, No. 6, 477–482 (1992).

    Article  Google Scholar 

  20. D. Kahneman, Attention and Effort, New Jersey (1973).

  21. A. Kok, “On the utility of P3 amplitude as a measure of processing capacity,” Psychophysiology, 38, No. 3, 557–577 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. M. Kutas, G. McCarthy, and E. Donchin, “Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time,” Science, 197, No. 4305, 792–795 (1977).

    Article  PubMed  CAS  Google Scholar 

  23. U. Leonard, S. Sunfert, P. Van Heecke, and G. A. Orban, “Attention mechanisms in visual search, an fMRI study,” J. Cogn. Neurosci., 12, Supplement 2, 61–75 (2000).

    Article  Google Scholar 

  24. A. Martinez, F. Di Russo, L. Anlo-Vento, and S. A. Hillyard, “Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies,” Clin. Neurophysiol., 112, No. 11, 1980–1998 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. M. Mishkin, L. Ungerleider, and K. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci., 6, 414–417 (1983).

    Article  Google Scholar 

  26. A. C. Nobre, G. N. Sebestyen, D. R. Gitelman, M. M. Mesulam, R. S. G. Frackowiak, and C. D. Frith, “Functional localization of the system for visuospatial attention using positron emission tomography,” Brain, 120, No. 3, 515–533 (1997).

    Article  PubMed  Google Scholar 

  27. I. R. Olson, M. M. Chun, and T. Alisson, “Contextual guidance of attention. Human intracranial event-related potential evidence for feed-back modulation in anatomically early, temporally late stages of visual processing,” Brain, 124, 1417–1425 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. R. E. Passingham and I. Toni, “Contrasting the dorsal and ventral visual systems: guidance of movement versus decision making,” Neuroimage, 14, 125–131 (2001).

    Article  Google Scholar 

  29. T. Picton, “P300: Review and reconciliation,” Psychopharmacology, 32, Supplement 1, 7 (1995).

    Google Scholar 

  30. T. W. Picton and D. T. Stuss, “The component structure of the human event-related potentials,” Prog. Brain Res., 54, 18–49 (1980).

    Google Scholar 

  31. W. S. Pritchard, “Psychophysiology of P300,” Psychol. Bull., 89, 506–540 (1981).

    Article  PubMed  CAS  Google Scholar 

  32. D. Regan, Human Brain Electrophysiology, Elsevier, New York, London (1989).

    Google Scholar 

  33. W. Ritter, J. M. Ford, A. W. K. Gaillard, R. Harter, N. Kutas, R. Näätänen, J. Polish, B. Revault, and J. Rohrbaugh, “Cognition and event-related potentials,” in: The Relation of Negative Potentials and Cognitive Processes,” R. Karrer, J. Cohen, and P. Tveting, Ann. N.Y. Acad. Sci., 425, 24–38 (1984).

  34. A. B. Sereno and J. H. Maunsell, “Shape selectivity in primate lateral intraparietal cortex,” Nature, 395, No. 6701, 500–503 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. D. T. Stuss and T. W. Picton, “Neurophysiological correlates of human concept formation,” Behav. Biology, 23, 135–162 (1978).

    Article  CAS  Google Scholar 

  36. S. Sutton and D. S. Tuchkin, “The late positive complex. Advances and new problems,” Ann. N.Y. acad. Sci., 425, 1–23 (1984).

    Article  PubMed  CAS  Google Scholar 

  37. C. Umilta, “Orienting of attention,” in: Handbook of Neuropsychology, F. Boller and J. Grafman (eds.), Elsevier,Vol. 1, pp. 175–193 (1988).

  38. T. R. Vidyasagar, “A neuronal model of attentional spotlight: parietal guiding the temporal,” Brain Res. Rev., 30, No. 1, 66–76 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. J. M. Wolf and T. Horovitz, “PERSPECTIVE. What attributes guide the development of vision attention,” Neurosci., 5, 495–501 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Baranov-Krylov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 96, No. 4, pp. 385–395, April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov-Krylov, I.N., Shuvaev, V.T. & Astashchenko, A.P. Changes in Evoked Potentials on Increases in the Difficulty of Visual Searches in Humans. Neurosci Behav Physi 41, 814–820 (2011). https://doi.org/10.1007/s11055-011-9491-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9491-9

Keywords

Navigation