Skip to main content

The Role of Erythropoetin in Ischemic Preconditioning, Postconditioning, and Regeneration of the Brain after Ischemia

Analysis of published data shows that erythropoietin plays an important role in controlling the tolerance of the brain to the actions of ischemia and reperfusion. This cytokine has a role in ischemic preconditioning of the brain and can imitate the phenomena of preconditioning and postconditioning. However, it is unclear whether endogenous erythropoietin is involved in postconditioning of the brain. Erythropoetin was found to inhibit neuron apoptosis after ischemia/reperfusion. Erythropoetin can stimulate brain regeneration after stroke. The signaling mechanism of the neuroprotective action of erythropoietin has been well studied, though there are very few data on the mechanisms of erythropoietin-induced neurogenesis and neoangiogenesis. It is not known whether erythropoietin has infarct-limiting effects in humans or can stimulate neurogenesis and neoangiogenesis in patients after stroke.

This is a preview of subscription content, access via your institution.

References

  1. A. A. Filipchenko, “Caspases: regulators of apoptosis and other cellular functions,” Biokhimiya, 68, No. 4, 453–466 (2003).

    Google Scholar 

  2. N. Bahcekapili. G. Uzüm, C. Gökkusu, et al., “The relationship between erythropoietin pre-treatment with blood-brain barrier and lipid peroxidation after ischemia/reperfusion in rats,” Life Sci, 80, No. 14, 1245–1251 (2007).

    PubMed  Article  CAS  Google Scholar 

  3. J. E. Baker, “Erythropoietin mimics ischemic preconditioning,” Vascul. Pharmacol., 42, No. 5–6, 233–241 (2005).

    PubMed  Article  CAS  Google Scholar 

  4. W. A. Banks, N. L. Jumbe, C. L. Farrell, et al., “Passage of erythropoietic agents across the blood-brain barrier: a comparison of human and m urine erythropoietin and the analog darbepoetin alfa,” Eur. J. Pharmacol., 505, No. 1–3, 93–101 (2004).

    PubMed  Article  CAS  Google Scholar 

  5. B. B. Beleslin-Cokic, V. P. Cokic, X. Yu, et al., “Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells,” Blood, 104, No. 7, 2073–2080 (2004).

    Article  Google Scholar 

  6. A. Benraiss, E. Chmielnicki, K. Lerner, et al., “Adenoviral brainderived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult fore-brain,” J. Neurosci., 21, No. 17, 6718–6731 (2001).

    PubMed  CAS  Google Scholar 

  7. M. Bernaudin, H. H. Marti, S. Roussel, et al., “A potential role for erythropoietin in focal permanent cerebral ischemia in mice,” J. Cereb. Blood Flow Metab., 19, No. 6, 643–651 (1999).

    PubMed  Article  CAS  Google Scholar 

  8. M. Bernaudin, A. Bellail, H. H. Marti, et al., “Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain,” Glia, 30, No. 3, 271–278 (2000).

    PubMed  Article  CAS  Google Scholar 

  9. M. Bernaudin, A. S. Nedelec, D. Divoux, et al., “Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain,” J. Cereb. Blood Flow Metab., 22, No. 4, 393–403 (2002).

    PubMed  Article  CAS  Google Scholar 

  10. M. L. Brines, P. Ghezzi, S. Keenan, et al., “Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury,” Proc. Natl. Acad. Sci. USA, 97,No. 19, 10526–10531 (2000).

    PubMed  Article  CAS  Google Scholar 

  11. M. Brines, G. Grasso, F. Fiordaliso, et al., “Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor,” Proc. Natl. Acad. Sci. USA, 101, No. 41, 14907–14912 (2004).

    PubMed  Article  CAS  Google Scholar 

  12. M. Brines and A. Cerami, “Discovering erythropoietin’s extrahematopoietic functions: biology and clinical promise,” Kidney Int., 70, No. 2, 246–250 (2006).

    PubMed  Article  CAS  Google Scholar 

  13. V. Calabrese, G. Scapagnini, A. Ravagna, et al., “Molecular chaperones and their roles in neural cell differentiation,” Dev. Neurosci., 24, No. 1, 1–13 (2002).

    PubMed  Article  CAS  Google Scholar 

  14. G. Calapai, M. C. Marciano, F. Corica, et al., “Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation,” Eur. J. Pharmacol., 401, No. 3, 349–356 (2000).

    PubMed  Article  CAS  Google Scholar 

  15. P. Carnot and C. Deflandre, “Sur l’activité hematopoietique de serum au cours de la regeneration du sang,” C. R. Acad. Sci., 143, 384–286 (1906).

    CAS  Google Scholar 

  16. M. A. Catania M. C. Marciano, A. Parisi, et al., “Erythropoietin prevents cognition impairment induced by transient brain ischemia in gerbils,” Eur. J. Pharmacol., 437, No. 3, 147–150 (2002).

    PubMed  Article  CAS  Google Scholar 

  17. M. Celik, N. Gökmen, S. Erbayraktar, et al., “Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury,” Proc. Natl. Acad. Sci. USA, 99, No. 4, 2258–2263 (2007).

    Article  Google Scholar 

  18. O. Z. Chi, C. Hunter, X. Liu, and H. R. Weiss, “Effects of anti-VEGF antibody on blood-brain barrier disruption in focal cerebral ischemia,” Exp. Neurol., 204, No. 1, 283–287 (2007).

    PubMed  Article  CAS  Google Scholar 

  19. O. Z. Chi, C. Hunter, X. Liu, and H. R. Weiss, “Effects of erythropoietin on blood-brain barrier disruption in focal cerebral ischemia,” Pharmacology, 82, No. 1, 38–42 (2008).

    PubMed  Article  CAS  Google Scholar 

  20. D. W. Choi and S. M. Rothman, “The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death,” Ann. Rev. Neurosci., 13, 171–182 (1990).

    PubMed  Article  CAS  Google Scholar 

  21. Z. Z. Chong, J. A. Kang, and K. Maiese, “Erythropoietin is a novel vascular protectant through activation of Aktl and mitochondrial modulation of cysteine proteases,” Circulation, 106, No. 23, 2973–2979 (2002).

    PubMed  Article  CAS  Google Scholar 

  22. M. Crompton, “Mitochondrial intermembrane junctional complexes and their role in cell death,” J. Physiol., 529, 11–21 (2000).

    PubMed  Article  CAS  Google Scholar 

  23. S. R. Datta, A. Brunet, and M. E. Greenberg, “Cellular survival: a play in three Akts,” Genes Dev., 13, No. 22, 2905–2927 (1999).

    PubMed  Article  CAS  Google Scholar 

  24. M. Digicaylioglu, S. Bichet, H. H. Marti, et al., “Localization of specific erythropoietin binding sites in defined areas of the mouse brain,” Proc. Natl. Acad. Sci. USA, 92, No. 9, 3717–3720 (1995).

    PubMed  Article  CAS  Google Scholar 

  25. M. Digicaylioglu and S. A. Lipton, “Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-KB signalling cascades,” Nature, 412, No. 6847, 641–647 (2001).

    PubMed  Article  CAS  Google Scholar 

  26. S. A. Doggrell, “A neuroprotective derivative of erythropoietin that is not erythropoietic,” Exp. Opin. Investig. Drugs, 13, No. 11, 1517–1519 (2004).

    Article  CAS  Google Scholar 

  27. H. Ehrenreich, N. Hasselblatt, C. Dembowski, et al., “Erythropoietin therapy for acute stroke is both safe and beneficial,” Mol. Med., 8, No. 8, 495–505 (2002).

    PubMed  CAS  Google Scholar 

  28. S. Erbayraktar, G. Grasso, A. Sfacteria, et al., “Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo,” Proc. Natl. Acad. Sci. USA, 100, No. 11, 6741–6746 (2003).

    PubMed  Article  CAS  Google Scholar 

  29. Y. F. Fan, C. Z. Lu, J. Xie, et al., “Apoptosis inhibition in ischemic brain by intraperitoneal PTD-BIR3-RING (XIAP),” Neurochem. Int., 48, No. 1, 50–59 (2006).

    PubMed  Article  CAS  Google Scholar 

  30. F. F. Gonzalez, P. McQuillen, D. Mu, et al., “Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke,” Dev. Neurosci., 29, No. 4–5, 321–330 (2007).

    PubMed  Article  CAS  Google Scholar 

  31. P. M. Grimley, F. Dong, and H. Rui, “Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation,” Cytokine Growth Factor Rev., 10, No. 2, 131–157 (1999).

    PubMed  Article  CAS  Google Scholar 

  32. D. J. Hausenloy and D. M. Yellon, “Survival kinases in ischemic preconditioning and postconditioning,” Cardiovasc. Res., 70, No. 2, 240–253 (2006).

    PubMed  Article  CAS  Google Scholar 

  33. Y. Higuchi, H. Hattori, T. Kume, et al., “Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminomianidine,” Eur. J. Pharmacol., 342, No. 1, 47–49 (1998).

    PubMed  Article  CAS  Google Scholar 

  34. K. Imaizumi, T. Morihara,Y. Mori, et al., “The cell death-promoting gene DPS, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid β-protein,” J. Biol. Chem., 274, No. 12, 7975–7981 (1999).

    PubMed  Article  CAS  Google Scholar 

  35. L. P. Kane,V. S. Shaipor, D. Stokoe, and A. Weiss, “Induction of NF-κB by the Akt/PKB kinase,” Curr. Biol., 9, No. 11, 601–604 (1999).

    PubMed  Article  CAS  Google Scholar 

  36. M. Kawakami, M. Sekiguchi, S. Sato, et al., “Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia,” J. Biol. Chem., 276, No. 42, 39469–39475 (2001).

    PubMed  Article  CAS  Google Scholar 

  37. E. Kilic, U. Kilic, J. Zoliz, et al., “Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways,” FASEB J., 19, No. 14, 2026–2028 (2005).

    PubMed  CAS  Google Scholar 

  38. A. Kumral, E. Ozer, O. Yilmaz, et al., “Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats,” Biol. Neonate, 83, No. 3, 224–228 (2003).

    PubMed  Article  CAS  Google Scholar 

  39. A. Kumral, H. Baskin, N. Gokmen, et al., “Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats: is it an explanation for the protective role of erythropoietin?” Biol. Neonate, 85, No. 1, 51–54 (2004).

    PubMed  Article  CAS  Google Scholar 

  40. A. Kumral, S. Gonenc, O. Ackigoz, et al., “Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxic-ischemic brain injury in neonatal rats,” Biol. Neonate, 87, No. 1, 15–18 (2005).

    PubMed  Article  CAS  Google Scholar 

  41. A. Kumral, S. Genc, E. Ozer, et al., “Erythropoietin downregulates Bax and DP5 proapoptotic gene expression in neonatal hypoxicischemic brain injury,” Biol. Neonate, 89, No. 3, 205–210 (2006).

    PubMed  Article  CAS  Google Scholar 

  42. J. V. Lafuente, E. G. Argandoña, and B. Mitre, “VEGFR-2 expression in brain injury: its distribution related to brain-blood barrier markers,” J. Neural Transm., 113, No. 4, 487–496 (2006).

    PubMed  Article  CAS  Google Scholar 

  43. P. A. Lapchak, A. Kirkeby, J. A. Zivin, and T. N. Sager, “Therapeutic window for nonerythropoietic carbamylated-erythropoietin to improve motor function following multiple infarct ischemic strokes in New Zealand white rabbits,” Brain Res., 1238, 208–214 (2008).

    PubMed  Article  CAS  Google Scholar 

  44. P. Lewczuk, M. Hasselblatt, H. Kamrowski-Kruch, et al., “Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin,” Neuroreport, 11, No. 16, 3485–3488 (2000).

    PubMed  Article  CAS  Google Scholar 

  45. F. Li, Z. Z. Chong, and K. Maiese, “Erythropoietin on a tightrope: balancing neuronal and vascular protection between intrinsic and extrinsic pathways,” Neurosignals, 13, No. 6, 265–289 (2004).

    PubMed  Article  Google Scholar 

  46. L. Li, Q. Jiang, G. Ding, et al., “MRI identification of white matter reorganization enhanced by erythropoietin treatment in a rat model of focal ischemia,” Stroke, 40, No. 3, 936–941 (2009).

    PubMed  Article  Google Scholar 

  47. Y. Li, Z. Lu, C. L. Keogh, et al., “Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice,” J. Cereb. Blood Flow Metab., 27, No. 5, 1043–1054 (2007a).

    PubMed  CAS  Google Scholar 

  48. Y. Li, Z. Y. Lu, M. Ogle, and L. Wei, “Erythropoietin prevents blood brain barrier damage induced by focal cerebral ischemia in mice,” Neurochem. Res., 32, No. 12, 2132–2141 (2007b).

    PubMed  Article  CAS  Google Scholar 

  49. R. Liu, A. Suzuki, Z. Guo, et al., “Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitro,” J. Neurochem., 96, No. 4, 1101–1110 (2006).

    PubMed  Article  CAS  Google Scholar 

  50. S. Malhotra, S. I. Savitz, L. Ocava, and D. M. Rosenbaum, “Ischemic preconditioning is mediated by erythropoietin through PI-3 kinase signaling in an animal model of transient ischemic attack,” J. Neurosci. Res., 83, No. 1, 19–27 (2006).

    PubMed  Article  CAS  Google Scholar 

  51. B. P. Meloni, P. A. Tilbrook, S. Boulos, et al., “Erythropoietin preconditioning in neuronal cultures: signaling, protection from in vitro ischemia, and proteomic analysis,” J. Neurosci. Res., 83, No. 4, 584–593 (2006).

    PubMed  Article  CAS  Google Scholar 

  52. M. Motero, F. R. Poulsen, J. Noraberg, et al., “Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures,” Exp. Neurol., 204, No. 1, 106–117 (2007).

    Article  Google Scholar 

  53. E. Morishita, S. Masuda, M. Nagao, et al., “Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death,” Neurosci., 76, No. 1, 105–116 (1997).

    Article  CAS  Google Scholar 

  54. A. Nagai, E. Nakagawa, H. B. Choi, et al., “Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture,” J. Neuropathol. Exp. Neurol., 60, No. 4, 386–392 (2001).

    PubMed  CAS  Google Scholar 

  55. C. T. Noguchi, P. Asavaritikrai, R. Teng, and Y. Jia, “Role of erythropoietin in the brain,” Crit. Rev. Oncol. Hematol., 24, No. 2, 159–171 (2007).

    Article  Google Scholar 

  56. S. K. Peirce and H. W. Findley, “The MDM 2 antagonist nutlin-3 sensitizes p53-null neuroblastoma cells to doxorubicin via E2F1 and TAp73,” int. J. Oncol., 34, No. 5, 1395–1402 (2009).

    PubMed  CAS  Google Scholar 

  57. K. Prass, A. Scharff, K. Ruscher, et al., “Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin,” Stroke, 34, No. 8, 1981–1986 (2003).

    PubMed  Article  CAS  Google Scholar 

  58. P. Romsi, E. Rönkä, K. Kiviluoma, et al., “Potential neuroprotective benefits of erythropoietin during experimental hypothermic circulatory arrest,” J. Thorac. Cardiovasc. Surg., 124, No. 4, 714–723 (2002).

    PubMed  Article  CAS  Google Scholar 

  59. K. Ruscher, D. Freyer, M. Karsch, et al., “Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model,” J. Neurosci., 22, No. 23, 10291–10301 (2002).

    PubMed  CAS  Google Scholar 

  60. Y. Sadamoto, K. Igase, M. Sakanaka, et al., “Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery,” Biochem. Biophys. Res. Commun., 253, No. 1, 26–32 (1998).

    PubMed  Article  CAS  Google Scholar 

  61. M. Sakanaka, T. C. Wen, S. Matsuda, et al., “In vivo evidence that erythropoietin protects neurons from ischemic damage,” Proc. Natl. Acad. Sci. USA, 95, No. 8, 4635–4640 (1998).

    PubMed  Article  CAS  Google Scholar 

  62. A. D. Sinor and D. A. Greenberg, “Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity,” Neurosci. Lett., 290, No. 3, 213–215 (2000).

    PubMed  Article  CAS  Google Scholar 

  63. A. L. Sirén, M. Fratelli, M. Brines, et al., “Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress,” Proc. Natl. Acad. Sci. USA, 98, No. 7, 4044–4049 (2001).

    PubMed  Article  Google Scholar 

  64. A. Sola, M. Rogido, B. H. Lee, et al., “Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats,” Pediatr. Res., 57, No. 4, 481–487 (2005).

    PubMed  Article  CAS  Google Scholar 

  65. E. Spandou, S. Papaoutsopoulou, V. Soubasi, et al., “Hypoxiaischemia affects erythropoietin and erythropoietin receptor expression pattern in the neonatal rat brain,” Brain Res., 1021, No. 2, 167–172 (2004).

    PubMed  Article  CAS  Google Scholar 

  66. Y. Sun, C. Zhou, P. Polk, et al., “Mechanisms of erythropoietininduced brain protection in neonatal hypoxia-ischemia rat model,” J. Cereb. Blood Flow Metab., 24, No. 2, 259–270 (2004).

    PubMed  Article  CAS  Google Scholar 

  67. Y. Sun, J. W. Calvert, and J. H. Zhang, “Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration,” Stroke, 36, No. 8, 1672–1678 (2005).

    PubMed  Article  CAS  Google Scholar 

  68. R. Takahashi, Q. Deveraux, I. Tamm, et al., “A single BIR domain of XIAP sufficient for inhibiting caspases,” J. Biol. Chem., 273, No. 14, 7787–7790 (1998).

    PubMed  Article  CAS  Google Scholar 

  69. P. J. Thornalley and M. Vasák, “Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals,” Biochem. Biophys Acta, 827, No. 1, 36–44 (1985).

    PubMed  Article  CAS  Google Scholar 

  70. M. Tsuji, Y. Higuchi, K. Shiraishi, et al., “Protective effect of aminoguanidine on hypoxic-ischemic brain damage and temporal profile of brain nitric oxide in neonatal rat,” Pediatr. Res., 47, No. 1, 79–83 (2000).

    PubMed  Article  CAS  Google Scholar 

  71. G. Valen, Z. Q. Yan, and G. K. Hansson, “Nuclear factor kappa-B and the heart,” J. Am. Coll. Cardiol., 38, No. 2, 307–314 (2001).

    PubMed  Article  CAS  Google Scholar 

  72. A. van der Kooij, F. Groenendaal, A. Kavelaars, et al., “Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia,” Brain Res. Rev., 59, No. 1, 22–33 (2008).

    PubMed  Article  Google Scholar 

  73. P. Villa, P. Bigini, T. Mennini, et al., “Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis,” J. Exp. Med., 198, No. 6, 971–975 (2003).

    PubMed  Article  CAS  Google Scholar 

  74. P. Villa, J. van Beek, A. K. Larsen, et al., “Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives,” J. Cereb. Blood Flow Metab., 27, No. 3, 552–563 (2007).

    PubMed  Article  CAS  Google Scholar 

  75. K. Wakida, M. Shimazawa, I. Hozumi, et al., “Neuroprotective effect of erythropoietin, and role of metallothionein-1 and −2, in permanent focal cerebral ischemia,” Neurosci., 148, No. 1, 105–114 (2007).

    Article  CAS  Google Scholar 

  76. L. Wang, Z. Zhang, Y. Wang, et al., “Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats,” Stroke, 35, No. 7, 1732–1737 (2004).

    PubMed  Article  CAS  Google Scholar 

  77. L. Wang, Z. G. Zhang, R. L. Zhang, et al., “Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration,” J. Neurosci., 26, No. 22, 5996–6003 (2006).

    PubMed  Article  CAS  Google Scholar 

  78. X. Wang, C. Zhu, X. Wang, et al., “The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia-ischemia as potently as erythropoietin,” J. Neurochem., 91, No. 4, 900–910 (2004).

    PubMed  Article  CAS  Google Scholar 

  79. Y. Wang, Z. G. Zhang, K. Rhodes, et al., “Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia,” Brit. J. Pharmacol., 151, No. 8, 1377–1384 (2007).

    Article  CAS  Google Scholar 

  80. L. Wei, B. H. Han, Y. Li, et al., “Cell death mechanism and protective effect of erythropoietin after focal ischemia in the whisker-barrel cortex of neonatal rats,” J. Pharmacol. Exp. Ther., 317, No. 1, 109–116 (2006).

    PubMed  Article  CAS  Google Scholar 

  81. T. C. Wen, Y. Sadamoto, J. Tanaka, et al., “Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression,” J. Neurosci. Res., 67, No. 6, 795–803 (2002).

    PubMed  Article  CAS  Google Scholar 

  82. C. Wiessner, P. R. Allegrini, D. Ekatodramis, et al., “Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin,” J. Cereb. Blood Flow Metab., 21, No. 7, 857–864 (2001).

    PubMed  Article  CAS  Google Scholar 

  83. D. Xu, Y. Bureau, D. C. McIntyre, et al., “Attenuation of ischemiainduced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus,” J. Neurosci., 19, No. 12, 5026–5033 (1999).

    PubMed  CAS  Google Scholar 

  84. R. Yamaji, T. Okada, M. Moriya, et al., “Brain capillary endothelial cells express two forms of erythropoietin receptor mRNAi,” Eur. J. Biochem., 239, No. 2, 494–500 (1996).

    PubMed  Article  CAS  Google Scholar 

  85. F. Zhang,A. P. Signore, Z. Zhou, et al., “Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms,” J. Neurosci. Res., 83, No. 7, 1241–1251 (2006).

    PubMed  Article  CAS  Google Scholar 

  86. F. Zhang, S. Wang, G. Cao, et al., “Signal transducers and activators of transcription 5 contributes to erythropoietin-mediated neuroprotection against hippocampal neuronal death after transient global cerebral ischemia,” Neurobiol. Dis., 25, No. 1, 45–53 (2007).

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maslov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 96, No. 1, pp. 26–42, January, 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maslov, L.N. The Role of Erythropoetin in Ischemic Preconditioning, Postconditioning, and Regeneration of the Brain after Ischemia. Neurosci Behav Physi 41, 353 (2011). https://doi.org/10.1007/s11055-011-9423-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11055-011-9423-8

Key words

  • erythropoietin
  • brain
  • ischemia
  • reperfusion
  • preconditioning
  • postconditioning
  • regeneration