Skip to main content
Log in

Hypothalamic Orexin-Containing Neurons in the Hypothalamus on Exposure to Antigenic and Non-Antigenic Stimuli

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Orexin is a hypothalamic peptide neurotransmitter first described in 1998. Orexinergic neurons are located predominantly in hypothalamic structures and play an important role in regulating a variety of physiological functions. In the present article we review data on the locations of orexin-containing neurons in the brains of Wistar rats and their projections within the hypothalamus and to other CNS structures. The involvement of orexinergic neurons in regulating feeding behavior and sleep/waking cycles is reviewed, as is its involvement in controlling immune system functions. Experimental data providing a comparative analysis of the responses of orexin-containing neurons to antigenic and non-antigenic stimuli are presented, these providing evidence of the functional heterogeneity of hypothalamic orexin-containing neurons, which is particularly apparent in mediating the responses of the brain to antigenic and non-antigenic stimuli. Analysis of both changes in the intensity of the expression of the preproorexin gene and the morphofunctional characteristics of hypothalamic orexin-containing neurons after exposure to antigens provides grounds for their possible involvement in the mechanisms mediating the responses of the brains to antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Anokhin and K. V. Sudakov, “A neurophysiological theory of hunger, appetite, and satiation,” Usp. Fiziol. Nauk., 2, No. 1, 3 (1971).

    CAS  PubMed  Google Scholar 

  2. Yu. V. Gavrilov, S. V. Perekrest, N. S. Novikova, and E. A. Korneva, “Stress-induced changes in the responses of cells in hypothalamic structures to administration of antigen (lipopolysaccharide) (in terms of c-Fos protein expression),” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 11, 1195–1203 (2006).

    CAS  Google Scholar 

  3. E. A. Korneva, T. B. Kazakova, and M. A. Nosov, “Expression of c-fos mRNA and c-Fos-like proteins in cells in hypothalamic structures after antigen administration,” Allergol. Immunol., 1, 37–44 (2001).

    Google Scholar 

  4. E. A. Korneva, V. M. Klimenko, and E. K. Shkhinek, Neurohumoral Support of Immune Homeostasis [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  5. E. A. Korneva and L. M. Khai, “Effects of lesioning areas of the hypothalamic region on immunogenesis,” Fiziol. Zh. SSSR, 49, No. 1, 42–48 (1963).

    CAS  PubMed  Google Scholar 

  6. E. A. Korneva and E. K. Shkhinek, Hormones and the Immune System [in Russian], Nauka, Leningrad (1988).

    Google Scholar 

  7. A. I. Lakomkin and I. F. Myagkov, Hunger and Thirst [in Russian], Meditsina, Moscow (1975).

    Google Scholar 

  8. E. S. London, “Effects of removal of different parts of the brain on immunity to anthrax in pigeons,” Arkh. Biol. Nauk., 7, 177–187 (1899).

    Google Scholar 

  9. F. Z. Meerson and G. T. Sukhikh, “Stress-induced impairments in the antitumor immunity system and their restriction by stress-limiting factors,” Vestn. Akad. Med. Nauk. SSSR, 8, 23–29 (1985).

    PubMed  Google Scholar 

  10. S. V. Perekrest, Yu. V. Gavrilov, N. S. Novikova, and E. A. Korneva, “Expression of c-Fos protein in cells in hypothalamic structures after administration of antigens of different natures,” Med. Immunol., 8, No. 2–3, 166–167 (2006).

    Google Scholar 

  11. S. V. Perekrest, N. S. Novikova, T. V. Abramova, Yu. V. Loskutov, V. J. Rodgers, and E. A. Korneva, “Patterns of activation in hypothalamic structures after administration of lipopolysaccharide at low and high doses,” Ros. Immunol. Zh., 2, No. 11, 156 (2008).

    Google Scholar 

  12. I. G. Savchenko, “On resistance to anthrax,” Vrach, 5, 132–134 (1891).

    Google Scholar 

  13. N. Alam, H. Gong, T. Alam, R. Jaganath, D. Ginty, and R. Szymusiak, “Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area,” J. Physiol., 538, No. 2, 619–631 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. K. A. Al-Barazanji, S. Wilson, J. A. Baker, D. S. Jessop, and M. S. Harbuz, “Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats,” Neuroendocrinol., 13, 421–424 (2001).

    Article  CAS  Google Scholar 

  15. V. R. Antunes, G. C. Brailoiu, E. H. Kwok, P. Scruggs, and N. J. Dunn, “Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, 1801–1807 (2001).

    Google Scholar 

  16. J. A. Bartlett, M. K. Demetrikopoulos, and S. J. Schleifer, “Phagocytosis and killing of Staphylococcus aureus: effects of stress and depression in children,” Clin. Diagnostic Lab. Immunol., 4, No. 3, 362–366 (1997).

    CAS  Google Scholar 

  17. C. Becskei, N. Hernadfalvy, D. Arsenijevic, T. A. Lutz, W. Langhans, and T. Riediger, “Inhibitory effects of LPS on hypothalamic nuclei involved in the control of food intake,” Brain Behav. Immunol., 22, 56–64 (2007).

    Article  Google Scholar 

  18. C. Becskei, T. Riediger, N. Hernadfalvy, D. Arsenijevic, T. A. Lutz, and W. Langhans, “Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake,” Brain Behav. Immunol., 22, No. 1, 56–64 (2008).

    Article  CAS  Google Scholar 

  19. H. O. Besedovsky and A. Rey, “Immune-neuro-endocrine interactions: facts and hypotheses,” Endocrinol. Rev., 17, No. 1, 64–102 (1996).

    CAS  Google Scholar 

  20. S. Bingham, P. T. Davey, A. J. Babbs, E. A. Irving, M. J. Sammons, M. Wyles, P. Jeffrey, L. Cutler, I. Riba, A. Johns, R. A. Porter, N. Upton, A. J. Hunter, and A. A. Parsons, “Orexin-A, an hypothalamic peptide with analgesic properties,” Pain, 92, 81–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. M. Blanco, M. Lopez, T. Garcia-Caballero, R. Gallego, A. Vazquez-Boquete, G. Morel, R. Señaris, F. Casanueva, C. Dieguez, and A. Beiras, “Cellular localization of orexin receptors in human pituitary,” J. Clin. Endocrinol. Metab., 86, 1616–1619 (2001).

    Article  CAS  Google Scholar 

  22. K. Bulloch, B. S. McEwen, J. Nordberg, A. Diwa, and S. Baird, “Selective regulation of T-cell development and function by calcitonin gene-related peptide in thymus and spleen. An example of differential regional regulation of immunity by the neuroendocrine system,” Ann. N.Y. Acad. Sci., 840, 551–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. K. Bulloch and W. Pomerantz, “Autonomic nervous system innervation of thymus-related lymphoid tissue in wild type and nude mice,” J. Comp. Neurol., 228, 57–68 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. C. T. Chen, L. L. Hwang, J. K. Chang, and N. J. Dun, “Presser effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 278, 692–697 (2000).

    Google Scholar 

  25. T. R. Coppinge, J. E. Minton, and P. G. Reddy, “Repeated restraint and isolation stress in lambs increases pituitary-adrenal secretions and reduces cell-mediated immunity,” J. Anim. Sci., 69, 2808–2814 (1991).

    Google Scholar 

  26. Y. Date, M. S. Mondal, S. Matsukura, Y. Ueta, H. Yamashita, H. Kaiya, K. Kangawa, and M. Nakazato, “Distribution of orexin/hypocretin in the rat median eminence and pituitary,” Brain Res. Mol. Brain Res., 76, 1–6 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. A. Denes, Z. Boldogkoi, G. Uhereczky, A. Hornyak, M. Rusvai, M. Palkovits, and K. J. Kovacs, “Central automatic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus,” Neurosci., 134, No. 3, 947–963 (2005).

    Article  CAS  Google Scholar 

  28. I. J. Elenkov, R. L. Wilder, G. P. Chrousos, and E. S. Vizi, “The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system,” Pharmacol. Rev., 52, No. 4, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  29. J. K. Elmquist and C. B. Saper, “Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide,” J. Comp. Neurol., 374, No. 3, 315–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. M. Fleshner, T. K. Nguyen, C. S. Cotter, and L. R. Watkins, “Acute stressor exposure both suppresses acquired immunity and potentiates innate immunity,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 282, R1680–R1686 (2002).

    Google Scholar 

  31. E. M. Friedman and D. A. Lawrence, “Environmental stress mediates changes in neuroimmunological interactions,” Toxicol. Sci., 67, 4–10 (2002).

    CAS  PubMed  Google Scholar 

  32. R. P. A. Gayekema, L. E. Goehler, C. B. Armstrong, J. Khorsand, S. F. Maier, and L. R. Watkins, “Differential Fos expression rat brain induced by lipopolysaccharide and staphylococcal enterotoxin B,” Neuroimmunomodulation, 6, 220–226 (1999).

    Google Scholar 

  33. R. P. Gaykema, C. C. Chen, and L. E. Goehler, “Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdale, and paraventricular nucleus of the hypothalamus: evidence for parallel viscerosensory pathways in the rat brain,” Brain Res., 1130, No. 1, 130–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. R. P. Gaykema, L. E. Goehler, F. J. Tilders, J. G. Bol, M. McGorry, M. Fleshner, S. F. Maier, and L. R. Watkins, “Bacterial endotoxin induces Fos immunoreactivity in primary afferent neurons of the vagus nerve,” Neuroimmunomodulation, 5, 234–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. R. P. Gaykema, S. M. Park, C. R. McKibbin, and L. E. Goehler, “Lipopolysaccharide suppresses activation of the tuberomammilary histaminergic system concomitant with behavior: a novel target of immune-sensory pathways,” Neurosci., 152, No. 1, 273–287 (2008).

    Article  CAS  Google Scholar 

  36. L. E. Goehler, R. P. A. Gaykema, K. Hansen, J. L. Kleiner, S. F. Maier, and L. R. Watkins, “Staphylococcal enterotoxin B induces fever, brain c-Fos expression, and serum corticosterone in rats,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 280, R1434–R1439 (2001).

    CAS  PubMed  Google Scholar 

  37. J. J. Hagan, R. A. Leslie, S. Patel, M. L. Evans, T. A. Wattam, S. Holmes, C. D. Benham, S. G. Taylor, C. Routledge, R. P. Munton, T. E. Ashmeade, A. S. Shah, J. P. Hatcher, P. D. Hatcher, D. N. Jones, M. I. Smith, D. C. Piper, A. J. Hunter, R. A. Porter, and N. Upton, “Orexin A activates locus coeruleus cell firing and increases arousal in the rat,” Proc. Natl. Acad. Sci. USA, 96, 10911–10916 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. M. Harbuz, “Neuroendocrine function and chronic inflammatory stress,” Exp. Physiol., 87, No. 5, 519–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. J. D. Hentall, G. Zorman, S. Kansky, and H. Fields, “An estimate of minimum number of brain stem neurons required for inhibition of a flexion reflex,” J. Neurophysiol., 51, 978–985 (1984).

    CAS  PubMed  Google Scholar 

  40. G. V. Hervieu, J. E. Cluderay, and D. C. Harrison, “Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord,” Neurosci., 103, 777–797 (2001).

    Article  CAS  Google Scholar 

  41. S. J. Hopkins and N. J. Rothwell, “Cytokines and the nervous system I: expression and regulation,” Trends Neurosci., 18, 83–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. T. L. Horvath, S. Diano, and A. N. van den Pol, “Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations,” J. Neurosci., 19, 1072–1087 (1999).

    CAS  PubMed  Google Scholar 

  43. T. Ida, K. Nakahara, and T. Murakami, “Possible involvement of orexin in the stress reaction in rats,” Biochem. Biophys. Res. Commun., 270, 318–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. M. Jaszberenyi, E. Bujdoso, and G. Telegdy, “The role of neuropeptide Y in orexin-induced hypothalamic-pituitary-adrenal activation,” J. Neuroendocrinol., 13, 438–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. M. Jaszberenyi, E. Bujdoso, I. Pataki, and G. Telegdy, “Effects of orexins on the hypothalamic-pituitary-adrenal system,” J. Neuroendocrinol., 12, 1174–1178 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. D. N. Jones, J. Gartlon, F. Parker, S. G. Taylor, C. Routledge, P. Hemmati, R. P. Munton, T. E. Ashmeade, J. P. Hatcher, A. Johns, R. A. Porter, J. J. Hagan, A. J. Hunter, and N. Upton, “Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity,” Psychopharmacology (Berlin), 153, 210–218 (2001).

    Article  CAS  Google Scholar 

  47. A. J. Kastin and V. Akerstrom, “Orexin A but not orexin B rapidly enters brain from blood by simple diffusion,” J. Pharmacol. Exp. Ther., 289, 219–223 (1999).

    CAS  PubMed  Google Scholar 

  48. T. Kodama, S. Usui, Y. Honda, and M. Kimura, “High Fos expression during the active phase in orexin neurons of a diurnal rodent, Tamias sibiricus barberi,” Peptides, 26, No. 4, 631–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Y. Koyama, K. Takahashi, T. Kodama, and Y. Kayama, “State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking,” Neurosci., 119, No. 4, 1209–1219 (2003).

    Article  CAS  Google Scholar 

  50. K. Kunii, A. Yamanaka, T. Nambu, J. Matsuzaki, K. Goto, and T. Sakurai, “Orexins/hypocretins regulate drinking behaviour,” Brain Res., 842, 256–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. K. Kurose, Y. Ueta, Y. Yamamoto, R. Serino, Y. Ozaki, J. Saito, S. Nagata, and H. Yamashita, “Effects of restricted feeding on the activity of hypothalamic orexin (OX)-A containing neurons and OX2 receptor mRNA level in the paraventricular nucleus of rats,” Regul. Pept., 104, 145–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. S. Lacroix and S. Rivest, “Functional circuitry in the brain of immune-challenged rats: Partial involvement of prostaglandins,” J. Comp. Neurol., 387, 307–324 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. L. De Lecea, T. S. Kilduff, C. Peyron, X. Gao, P. E. Foye, P. E. Danielson, C. Fukuhara, E. L. Battenberg, V. T. Gautvik, F. S. Bartlett, W. N. Frankel, A. N. van den Pol, F. E. Bloom, K. M. Gautvik, and J. G. Sutcliffe, “The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity,” Proc. Natl. Acad. Sci. USA, 95, 322–327 (1998).

    Article  PubMed  Google Scholar 

  54. Y. Li, X. B. Gao, T. Sakurai, and A. N. van den Pol, “Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system,” Neuron, 36, 1169–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. L. K. Malendowicz, A. Hochol, A. Ziolkowska, M. Nowak, L. Gottardo, and G. G. Nussdorfer, “Prolonged orexin administration stimulates steroid-hormone secretion, acting directly on the rat adrenal gland,” Int. J. Mol. Med., 7, 401–404 (2001).

    CAS  PubMed  Google Scholar 

  56. L. K. Malendowicz, C. Tortorella, and G. G. Nussdorfer, “Orexins stimulate corticosterone secretion of rat adrenocortical cells, through the activation of the adenylate cyclase-dependent signaling cascade,” J. Steroid Biochem. Mol. Biol.,, 70, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. P. J. F. Martins, V. D’Almeida, M. Pedrazzoli, L. Lin, E. Mignot, and S. Tufik, “Increased hypocretin-1 (Orexin-A) levels in cerebrospinal fluid of rats after short-term forced activity,” Regul. Pept., 117, 155–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. G. Mazzocchi, K. L. Malendowicz, L. Gottardo, F. Aragona, and G. G. Nussdorfer, “Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade,” J. Clin. Endocrinol. Metab., 86, 778–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. S. Metanikov and V. Chorine, “Roles des reflexes conditionels dans l’immunite,” Ann. Inst. Pasteur, 40, 893–900 (1926).

    Google Scholar 

  60. T. Moriguchi, T. Sakurai, T. Nambu, M. Yanagisawa, and K. Goto, “Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia,” Neurosci. Lett., 264, 101–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. T. Nambu, T. Sakurai, K. Mizukami, Y. Hosoya, M. Yanagisawa, and K. Goto, “Distribution of orexin neurons in the adult rat brain,” Brain Res., 827, 243–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. T. Nanmoku, K. Isobe, T. Sakurai, A. Yamanaka, K. Takekoshi, Y. Kawakami, K. Goto, and T. Nakai, “Effects of orexin on cultured porcine adrenal medullary and cortex cells,” Regul. Pept., 104, 125–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Su-Mi Park, P. A. Gaykema Ron, and L. E. Goehler, “How does immune challenge inhibit ingestion of palatable food? Evidence that systemic lipopolysaccharide treatment modulates key nodal points of feeding neurocircuitry,” Brain Behav. Immun., 22, No. 8, 1160–1172 (2008).

    Article  PubMed  Google Scholar 

  64. S. V. Perekrest, T. V. Abramova, N. S. Novikova, Yu. V. Loskutov, V. J. Rogers, and E. A. Korneva, “Changes in immunoreactivity of orexin-A-positive neurons after an intravenous lipopolysaccharide injection,” Med. Sci. Monitoring, 14, No. 7, BR127–BR133 (2008).

    Google Scholar 

  65. C. Peyron, D. K. Tighe, A. N. van den Pol, L. De Lecea, H. C. Heller, J. G. Sutcliffe, and T. S. Kilduff, “Neurons containing hypocretin (orexin) project to multiple neuronal systems,” J. Neurosci., 18, 9996–10015 (1998).

    CAS  PubMed  Google Scholar 

  66. C. Phelps and L. T. Chen, “Brain response to endotoxin,” in: Cytokines and the Brain, C. Phelps and E. Korneva (eds.) (2008), pp. 435–455.

  67. H. S. Randeva, E. Karteris, D. Grammatopoulos, and E. W. Hillhouse, Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and energy homeostasis,” J. Clin. Endocrinol. Metab., 86, 4808–4813 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. R. J. Rodgers, J. C. Halford, R. L. Nunes de Souza, A. L. Canto de Souza, D. C. Piper, J. R. Arch, and J. E. Blundell, “Dose-response effects of orexin-A on food intake and the behavioural satiety sequence in rats,” Regul. Pept., 96, 71–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. S. H. Russell, M. S. Kim, C. J. Small, C. R. Abbott, D. G. Morgan, S. Taheri, K. G. Murdoch, J. F. Todd, M. A. Ghatei, and S. R. Bloom, “Central administration of orexin A suppresses basal and domperidone stimulated plasma prolactin,” J. Neuroendocrinol., 12, 1213–1218 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. S. H. Russell, C. J. Small, D. Sunter, L. Morgan, C. L. Dakin, M.A. Cohen, and S. R. Bloom, “Chronic intraparaventricular nuclear administration of orexin A in male rats does not alter thyroid axis or uncoupling protein-1 in brown adipose tissue,” Regul. Pept., 104, 61–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. E. G. Rybakina, S. N. Shanin, I. A. Kozinets, E. E. Fomicheva, and E. A. Korneva, “Cellular mechanisms of cold stress-related immunosuppression and the action of interleukin 1,” Int. J. Tiss. Reac., XIX, No. 3/4, 135–140 (1997).

    Google Scholar 

  72. F. Sakamoto, S. Yamada, and Y. Ueda, “Centrally administered orexin-A activates corticotrophin-realising factor (CRF)-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons,” Regul. Pept., 118, 248–256 (2004).

    Article  Google Scholar 

  73. T. Sakurai, A. Amemiya, M. Ishii, I. Matsuzaki, R. M. Chemelli, H. Tanaka, S. C. Williams, J. A. Richardson, G. P. Kozlowski, S. Wilson, J. R. Arch, R. E. Buckingham, A. C. Haynes, S. A. Carr, R. S. Annan, D. E. McNulty, W. S. Liu, J. A. Terrett, N. A. Elshourbagy, D. J. Bergsma, and M. Yanagisawa, “Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior,” Cell, 92, 573–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. W. K. Samson, B. Gosnell, J. K. Chang, Z. T. Resch, and T. C. Murphy, “Cardiovascular regulatory actions of the hypocretins in brain,” Brain Res., 831, 248–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. W. K. Samson, M. M. Taylor, M. Follwell, and A. V. Ferguson, “Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates,” Regul. Pept., 104, 97–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. J. F. Sheridan, N. G. Feng, R. H. Bonneau, C. M. Allen, B. S. Huneycutt, and R. Glaser, “Restrain stress differentially affects anti-viral cellular and humoral immune responses in mice,” J. Neuroimmunol., 31, No. 3, 245–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. T. Shirasaka, M. Nakazoto, S. Matsukura, M. Takasaki, and H. Kannan, “Sympathetic and cardiovascular actions of orexins in conscious rats,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 277, 1780–1785 (1999).

    Google Scholar 

  78. U. Steidl, S. Bork, S. Schaub, et al., “Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators,” Blood, 104, No. 1, 81–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. T. L. Steininger, T. S. Kilduff, M. Behan, R. M. Benca, and C. F. Landry, “Comparison of hypocretin/orexin and melanin-concentrating hormone neurons and axonal projections in the embryonic and postnatal rat brain,” J. Chem. Neuroanat., 27, No. 3, 165–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. N. Takahashi, T. Okumura, H. Yamada, and Y. Kohgo, “Stimulation of gastric acid secretion by centrally administered orexin-A in conscious rats,” Biochem. Biophys. Res. Commun., 254, 623–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. R. Tamura, T. Kondoh, T. Ono, H. Nishijo, and K. Torii, “Effects of repeated cold stress on activity of hypothalamic neurons in rats during performance of operant licking task,” J. Neurophysiol., 84, No. 6, 2844–2858 (2000).

    CAS  PubMed  Google Scholar 

  82. P. Trivedi, H. Yu, D. J. MacNeil, L. H. Van der Ploeg, and X. M. Guan, “Distribution of orexin receptor mRNA in the rat brain,” FEBS Lett., 438, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. A. V. Turnbull and C. L. Rivier, “Regulation of the hypothalamicpituitary-adrenal axis by cytokines: Actions and mechanisms of action,” Physiol. Rev., 79, No. 1, 1–71 (1999).

    CAS  PubMed  Google Scholar 

  84. A. N. van den Pol, “Hypothalamic hypocretin (orexin): robust innervation of the spinal cord,” J. Neurosci., 19, 3171–3182 (1999).

    PubMed  Google Scholar 

  85. A. N. van den Pol, X. B. Gao, K. Obrietan, T. S. Kilduff, and A. B. Belousov, “Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin,” J. Neurosci., 18, 7962–7971 (1998).

    PubMed  Google Scholar 

  86. D. M. Webel, B. N. Finck, H. D. Baker, and R. W. Johnson, “Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide,” J. Anim. Sci., 75, 1514–1520 (1997).

    CAS  PubMed  Google Scholar 

  87. S. Zhang, D. Blache, P. E. Vercoe, C. L. Adam, M. A. Blackberry, P. A. Findlay, K. A. Eidne, and G. B. Martin, “Expression of orexin receptors in the brain and peripheral tissues of the male sheep,” Regul. Pept., 124, 81–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Y.-H. Zhang, J. K. Jan Lu, J. K. Elmquist, and C. B. Saper, “Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord,” J. Neurosci., 20, No. 17, 6578–6586 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Korneva.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 95, No. 12, pp. 1309–1323, December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikova, N.S., Perekrest, S.V., Shainidze, K.Z. et al. Hypothalamic Orexin-Containing Neurons in the Hypothalamus on Exposure to Antigenic and Non-Antigenic Stimuli. Neurosci Behav Physi 41, 188–197 (2011). https://doi.org/10.1007/s11055-011-9399-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9399-4

Key words

Navigation