Skip to main content
Log in

Involvement of the trisynaptic hippocampal pathway in generating neural representations of object–place associations (an analytical review)

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The possible mechanisms by which neural representations of object–place associations are generated in different parts of the network consisting of the hippocampus and the parahippocampal complex are analyzed. Spatial and non-spatial information arrives in the hippocampus via two streams from the parahippocampal complex, which consists of the perirhinal, postrhinal, and entorhinal areas of the cortex. It can be suggested that because there are no connections between the lateral and medial areas of the entorhinal cortex, these representations, as particular patterns of connected and discharging neurons, are generated mainly in the hippocampus, though they may also be generated in the entorhinal cortex because of the input from the postrhinal cortex. As both information streams converge on neurons in the dentate gyrus and field CA3, the trisynaptic pathway through the hippocampus may play a key role in generating these representations. As spatial information arrives in the neocortex and passes from there via the parahippocampal complex to the hippocampus about 20 msec earlier than non-spatial information, spatial information is processed first in the dentate gyrus and field CA3. Later, because of the return of excitation from field CA3c to the dentate gyrus, neural representations of object–place associations start to be generated in the dentate gyrus. Signals are transferred from the dentate gyrus to field CA3, where information arriving from the entorhinal cortex is superimposed on the neuronal patterns activated by these signals. As a result, more complex neural representations are generated in field CA3 and signals are sent to field CA1. In the dorsal (ventral) part of field CA1, non-spatial (spatial) information arriving from the lateral (medial) part of the entorhinal cortex is superimposed on the activated neuronal pattern. The result is that higher-order representations are generated in field CA1. In the parahippocampal cortex, the generation of neuronal representations of object–place associations can result from the transfer of activity from the dorsal part of hippocampal field CA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. G. Silkis, “Paradoxical sleep as a means for understanding hippocampal mechanisms of contextual memory,” Zh. Vyssh. Nerv. Deyat., 58, No. 4, 389–407 (2008).

    Google Scholar 

  2. E. Aminoff, N. Gronau, and M. Bar, “The parahippocampal cortex mediates spatial and non-spatial associations,” Cereb. Cortex, 17, No. 7, 1493–1503 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. P. Andersen, A. F. Soleng, and M. Raastad, “The hippocampal lamella hypothesis revisited,” Brain Res., 886, No. 1–2, 165–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. M. I. Anderson and K. J. Jeffery, “Heterogeneous modulation of place cell firing by changes in context,” J. Neurosci., 23, No. 26, 8827–8835 (2003).

    CAS  PubMed  Google Scholar 

  5. S. E. Arnold, “Cellular and molecular neuropathology of the parahippocampal region in schizophrenia,” Ann. N.Y. Acad. Sci., 911, 275–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. J. Bachevalier and S. Nemanic, “Memory for spatial location and object–place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex,” Hippocampus, 18, No. 1, 64–80 (2008).

    Article  PubMed  Google Scholar 

  7. J. S. Baizer, L. G. Ungerleider, and R. Desimone, “Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques,” J. Neurosci., 11, No. 1, 168–190 (1991).

    CAS  PubMed  Google Scholar 

  8. M. Bar, E. Aminoff, and D. L. Schachter, “Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se,” J. Neurosci., 28, No. 34, 8539–8544 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. M. D. Berense, T. J. Bussey, A. C. Lee, T. T. Rogers, R. R. Davies, L. M. Saksida, E. A. Murray, and K. S. Graham, “Functional specialization in the human medial temporal lobe,” J. Neurosci., 25, No. 44, 10239–10246 (2005).

    Article  Google Scholar 

  10. G. Biella, L. Uva, U. G. Hofmann, and M. de Curtis, “Associative interactions within the superficial layers of the entorhinal cortex of the guinea pig,” J. Neurophysiol., 88, No. 3, 1159–1165 (2002).

    PubMed  Google Scholar 

  11. V. D. Bohbot, J. J. Allen, and L. Nadel, “Memory deficits characterized by patterns of lesions to the hippocampus and parahippocampal cortex,” Ann. N.Y. Acad. Sci., 911, 355–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. V. H. Brun, S. Leutgeb, H. Q. Wu, R. Schwarcz, M. P. Witter, E. I. Moser, and M. B. Moser, “Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex,” Neuron, 57, No. 2, 290–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. E. A. Buffalo, P. S. Bellgowan, and A. Martin, “Distinct roles for medial temporal lobe structures in memory for objects and their locations,” Learn. Mem., 13, No. 5, 638–643 (2006).

    Article  PubMed  Google Scholar 

  14. R. Burwell, “The parahippocampal region: corticocortical connectivity,” Ann. N.Y. Acad. Sci., 911, 25–42 (2000).

    Article  Google Scholar 

  15. R. D. Burwell and D. G. Amaral, “Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex,” J. Comp. Neurol., 391, No. 3, 293–321 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. R. D. Burwell and D. G. Amaral, “Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat,” J. Comp. Neurol., 398, No. 2, 179–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. G. Buzsaki, “Polysynaptic long-term potentiation: a physiological role of the perforant path-CA3/CA1 pyramidal cell synapse,” Brain Res., 455, No. 1, 192–195 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. E. Calixto, E. J. Galván, J. P. Card, and G. Barrionuevo, “Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons,” J. Physiol., 386, No. 11, 2695–2712 (2008).

    Article  Google Scholar 

  19. K. J. Canning, K. Wu, P. Peloquin, F. Kloosterman, and L. S. Leung, “Physiology of the entorhinal and perirhinal projections to the hippocampus studied by current source density analysis,” Ann. N.Y. Acad. Sci., 911, 55–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. L. A. Cenquizca and L. W. Sanson, “Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex,” Brain Res. Rev., 56, No. 1, 1–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. C. A. Chapman and R. J. Racine, “Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis,” J. Neurophysiol., 78, No. 5, 2602–2615 (1997).

    CAS  PubMed  Google Scholar 

  22. S. Craig and S. Commins, “Plastic and metaplastic changes in the CA1 and subicular projections to the entorhinal cortex,” Brain Res., 1147, No. 1, 124–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. L. Davachi, “Item, context and relational episodic encoding in humans,” Curr. Opin. Neurobiol., 16, No. 6, 693–700 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. J. R. Devlin and C. J. Price, “Perirhinal contributions to human visual perception,” Curr. Biol., 17, No. 17, 1484–1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. R. A. Diana, A. P. Yonelinas, and C. Ranganath, “High-resolution multi-voxel pattern analysis of category selectivity in the medial temporal lobes,” Hippocampus, 18, No. 6, 536–541 (2008).

    Article  PubMed  Google Scholar 

  26. C. L. Dolorfo and D. G. Amaral, “Entorhinal cortex of the rat: organization of intrinsic connections,” J. Comp. Neurol., 398, No. 1, 49–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. H. Eichenbaum, A. P. Yonelinas, and C. Ranganath, “The medial temporal lobe and recognition memory,” Ann. Rev. Neurosci., 30, 123–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. R. A. Epstein, J. S. Higgins, K. Jablonski, and A. M. Feiler, “Visual scene processing in familiar and unfamiliar environments,” J. Neurophysiol., 97, No. 5, 3670–3683 (2007).

    Article  PubMed  Google Scholar 

  29. I. Erchova, G. Kreck, U. Heinemann, and A. V. Herz, “Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold,” J. Physiol., 560, No. 1, 89–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. S. C. Furtak, S. M. Wei, K. L. Agster, and R. D. Burwell, “Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices,” Hippocampus, 17, No. 9, 709–722 (2007).

    Article  PubMed  Google Scholar 

  31. R. Gattas, A. P. Sousa, M. Mishkin, and L. G. Ungerleider, “Cortical projections of area V2 in the macaque,” Cereb. Cortex, 7, No. 2, 110–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. P. Gaussier, J. P. Banquet, F. Sargolini, C. Giovannangeli, E. Save, and B. Poucet, “A model of grid cells involving extra hippocampal path integration, and the hippocampal loop,” J. Integr. Neurosci., 6, No. 3, 447–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. P. E. Gilbert, R. P. Kesner, and I. Lee, “Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1,” Hippocampus, 11, No. 6, 626–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. V. Gnatkovsky and M. de Curtis, “Hippocampus-mediated activation of superficial and deep layer neurons in the medial entorhinal cortex of the isolated guinea pig brain,” J. Neurosci., 26, No. 3, 873–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. N. J. Goodrich-Hunsaker, M. R. Hunsaker, and R. P. Kesner, “The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information,” Behav. Neurosci., 122, No. 1, 16–26 (2008).

    Article  PubMed  Google Scholar 

  36. K. M. Gothard, K. L. Hoffman, F. P. Battaglia, and B. L. McNaughton, “Dentate gyrus and CA1 ensemble activity during spatial reference frame shifts in the presence and absence of visual input,” J. Neurosci., 21, No. 18, 7284–7292 (2001).

    CAS  PubMed  Google Scholar 

  37. T. Hafting, M. Fyhn, S. Molden, M. B. Moser, and E. I. Moser, “Microstructure of a spatial map in the entorhinal cortex,” Nature, 436, No. 7052, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. D. Hasssabis, D. Kumaran, S. D. Vann, and E. A. Maguire, “Patients with hippocampal amnesia cannot imagine new experiences,” Proc. Natl. Acad. Sci. USA, 104, No. 5, 1726–1731 (2007).

    Article  Google Scholar 

  39. S. M. Hayes, L. Nadel, and L. Ryan, “The effect of scene context on episodic object recognition: parahippocampal cortex mediates memory encoding and retrieval success,” Hippocampus, 17, No. 9, 873–889 (2007).

    Article  PubMed  Google Scholar 

  40. J. M. Henderson, C. L. Larson, and D. C. Zhu, “Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study,” Brain Cogn., 66, No. 1, 40–49 (2008).

    Article  PubMed  Google Scholar 

  41. M. R. Hunsaker, J. S. Rosenberg, and R. P. Kresner, “The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty,” Hippocampus, 18, No. 10, 1064–1073 (2008).

    Article  PubMed  Google Scholar 

  42. R. Insausti and D. G. Amaral, “Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents,” J. Comp. Neurol., 509, No. 6, 608–641 (2008).

    Article  PubMed  Google Scholar 

  43. R. Insausti, M. T. Herrero, and M. P. Witter, “Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents,” Hippocampus, 7, No. 2, 146–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. N. Ishizuka, J. Weber, and D. G. Amaral, “Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat,” J. Comp. Neurol., 295, No. 4, 580–623 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. A. Johnson and A. D. Redish, “Neural ensembles in CA3 transientlyencode paths forward of the animal at a decision point,” J. Neurosci., 27, No. 45, 12176–12180 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. M. W. Jung and B. L. McNaughton, “Spatial selectivity of unit activity in the hippocampal granular layer,” Hippocampus, 3, No. 2, 165–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. M. W. Jung, S. I. Wiener, and B. L. McNaughton, “Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat,” J. Neurosci., 14, No. 12, 7347–7356 (1994).

    CAS  PubMed  Google Scholar 

  48. R. Kajiwara, F. G. Wouterlood, A. Sah, A. J. Boeckel, L. T. G. Bakste Bulte, and M. P. Witter, “Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1 – An anatomical study in the rat,” Hippocampus, 18, No. 3, 266–280 (2008).

    Article  PubMed  Google Scholar 

  49. K. M. Kerr, K. L. Agster, S. C. Furtak, and R. D. Burwell, “Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas,” Hippocampus, 17, No. 9, 697–708 (2007).

    Article  PubMed  Google Scholar 

  50. R. P. Kresner, “Behavioral functions of the CA3 subregion of the hippocampus,” Learn. Mem., 14, No. 11, 771–781 (2007).

    Article  Google Scholar 

  51. R. P. Kesner, M. R. Hunsaker, and M. W. Warthen, “The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats,” Behav. Neurosci., 122, No. 6, 1217–1225 (2008).

    Article  PubMed  Google Scholar 

  52. R. P. Kesner, I. Lee, and P. Gilbert, “A behavioral assessment of hippocampal function based on a subregional analysis,” Rev. Neurosci., 15, No. 5, 333–351 (2004).

    PubMed  Google Scholar 

  53. J. J. Knierim, I. Lee, and E. L. Hargreaves, “Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory,” Hippocampus, 16, No. 9, 755–764 (2006).

    Article  PubMed  Google Scholar 

  54. K. Köhler, J. Crane, and B. Milner, “Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes,” Hippocampus, 12, No. 6, 718–723 (2002).

    Article  PubMed  Google Scholar 

  55. K. A. Kosub, V. H. Do, and B. E. Derrick, “NMDA receptor antagonists block heterosynaptic long-term depression (LTD) but not longterm potentiation (LTP) in the CA3 region following lateral perforant path stimulation,” Neurosci. Lett., 374, No. 1, 29–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. G. Kreiman, C. Koch, and I. Fried, “Category-specific visual responses of single neurons in the human medial temporal lobe,” Nat. Neurosci., 3, No. 9, 946–953 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. P. Lavenex and D. G. Amaral, “Hippocampal-neocortical interaction: a hierarchy of associativity,” Hippocampus, 10, No. 4, 420–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. P. Lavenex, W. A. Suzuki, and D. G. Amaral, “Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex,” J. Comp. Neurol., 447, No. 4, 394–420 (2002).

    Article  PubMed  Google Scholar 

  59. I. Lee, T. S. Jerman, and R. P. Kesner, “Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3- lesions of the dorsal hippocampus,” Neurobiol. Learn. Mem., 84, No. 2, 138–147 (2005).

    Article  PubMed  Google Scholar 

  60. L. S. Leung, L. Roth, and K. J. Canning, “Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study,” J. Neurophysiol., 73, No. 6, 2392–2403 (1995).

    CAS  PubMed  Google Scholar 

  61. S. Leutgeb, J. K. Keutgeb, A. Treves, M. B. Moser, and E. I. Moser, “Distinct ensemble codes in hippocampal areas CA3 and CA1,” Science, 305, No. 5688, 1295–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. P. Liu and D. K. Bilkey, “Long-term potentiation in the perirhinalhippocampal pathway is NMDA dependent,” Neuroreport, 7, No. 7, 1241–1244 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. J. R. Manns and H. Eichenbaum, “Evolution of declarative memory,” Hippocampus, 16, No. 9, 795–808 (2006).

    Article  PubMed  Google Scholar 

  64. B. L. McNaughton, C. A. Barnes, J. Meltzer, and R. J. Sutherland, “Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge,” Exp. Brain Res., 76, No. 3, 485–496 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. A. Mohedano-Moriano, P. Pro-Sistiaga, M. M. Arroyo-Jimenez, F. Artacho-Perula, A. M. Insausti, P. Marcos, S. Cebada-Sanchez, J. Martinez-Ruiz, M. Munoz, X. Blaizot, A. Martinez-Marcos, D. G. Amaral, and R. Insausti, “Topographical and laminar distribution of cortical input to the monkey entorhinal cortex,” J. Anat., 211, No. 2, 250–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. F. Mormann, S. Kornblith, R. Q. Quiroga, A. Kraskov, M. Cerf, I. Fried, and C. Koch, “Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe,” J. Neurosci., 28, No. 36, 8865–8872 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. M. B. Moser and E. I. Moser, “Functional differentiation in the hippocampus,” Hippocampus, 8, No. 6, 608–619 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. G. M. Muir and D. K. Bilkey, “Instability in the place field location of hippocampal place cells after lesions centered on the perirhinal cortex,” J. Neurosci., 21, No. 11, 4016–4025 (2001).

    CAS  PubMed  Google Scholar 

  69. P. A. Naber, F. H. Lopes da Silva, and M. P. Witter, “Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum,” Hippocampus, 11, No. 2, 99–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. P. A. Naber, M. P. Witter, and F. H. Lopes da Silva, “Differential distribution of barrel or visual cortex Evoked responses along the rostrocaudal axis of the peri- and postrhinal cortices,” Brain Res., 877, No. 2, 298–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. G. Norman and M. J. Eacott, “Dissociable effects of lesions to the perirhinal cortex and the postrhinal cortex on memory for context and objects in rats,” Behav. Neurosci., 119, No. 2, 557–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. L. G. Nowak, M. H. Munk, P. Girard, and J. Bullier, “Visual latencies in areas VI and V2 of the macaque monkey,” Vis. Neurosci., 12, No. 2, 371–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. J. G. Pelletier, J. Apergis, and D. Pare, “Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex,” J. Neurophysiol., 91, No. 5, 2079–2089 (2004).

    Article  PubMed  Google Scholar 

  74. H. H. Pothuizen,W. N. Zhang, A. L. Jongen-Relo, J. Feldon, and B. K. Yee, “Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory,” Eur. J. Neurosci., 19, No. 3, 705–712 (2004).

    Article  PubMed  Google Scholar 

  75. G. J. Quirk, R. U. Muller, J. L. Kubie, and J. B. Ranck, Jr., “The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells,” J. Neurosci., 12, No. 5, 1945–1963 (1992).

    CAS  PubMed  Google Scholar 

  76. I. P. Riches, F. A. Wilson, and M. W. Brown, “The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate,” J. Neurosci., 11, No. 6, 1763–1779 (1991).

    CAS  PubMed  Google Scholar 

  77. K. S. Rockland and G. W. Van Hoesen, “Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus,” Cereb. Cortex, 9, No. 3, 232–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. H. E. Scharfman, “The CA3 ‘backprojection’ to the dentate gyrus,” Prog. Brain Res., 163, 627–637 (2007).

    Article  PubMed  Google Scholar 

  79. C. Schmidt-Hieber, P. Jonas, and J. Bischofberger, “Sub-threshold dendritic signal processing and coincidence detection in dentate gyrus granule cells,” J. Neurosci., 27, No. 31, 8430–8441 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. M. T. Schmolesky,Y. Wang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, “Signal timing across the macaque visual system,” J. Neurosci., 79, No. 6, 3272–3278 (1998).

    CAS  Google Scholar 

  81. A. Sik, M. Penttonen, A. Ylinen, and G. Buzsaki, “Hippocampal CA1 interneurons: an in vivo intracellular labeling study,” J. Neurosci., 15, No. 10, 6651–6665 (1995).

    CAS  PubMed  Google Scholar 

  82. K. Sim, I. DeWitt, T. Ditman, M. Zalesak, I. Greenhouse, D. Goff, A. P. Weiss, and S. Heckers, “Hippocampal and parahippocampal volumes in schizophrenia: a structural MRI study,” Schizophr. Bull., 32, No. 2, 332–340 (2006).

    Article  PubMed  Google Scholar 

  83. D. M. Smith and S. J. Mizumori, “Learning-related development of context-specific neuronal responses to places and events: the hippocampal role in context processing,” J. Neurosci., 26, No. 12, 3154–3163 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. W. A. Suzuki and D. G. Amaral, “Topographic organization of the reciprocal connections between the monkey entorhinal cortex and theperirhinal and parahippocampal cortices,” J. Neurosci., 14, No. 3, Part 2, 1856–1877 (1994).

    CAS  PubMed  Google Scholar 

  85. W. A. Suzuki and D. G. Amaral, “Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents,” J. Comp. Neurol., 350, No. 4, 497–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. L. M. Talamini, M. Meeter, B. Elvevag, J. M. Murre, and T. E. Goldberg, “Reduced parahippocampal connectivity produces schizophrenia-like memory deficits in simulated neural circuits with reduced parahippocampal connectivity,” Arch. Gen. Psychiatry, 62, No. 5, 485–493 (2005).

    Article  PubMed  Google Scholar 

  87. L. G. Ungerleider, T. W. Galkin, R. Desimone, and R. Gattass, “Cortical connections of area V4 in the macaque,” Cereb. Cortex, 18, No. 3, 477–499 (2008).

    Article  PubMed  Google Scholar 

  88. T. van Groen, P. Miettinen, and I. Kadish, “The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation,” Hippocampus, 13, No. 1, 133–149 (2003).

    Article  PubMed  Google Scholar 

  89. A. Vazdarjanova and J. F. Guzowski, “Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles,” J. Neurosci., 24, No. 29, 6489–6496 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. N. A. Vorobyov and M. W. Brown, “The topography of activity transmission between lateral entorhinal cortex and subfield CA1 of the hippocampus,” Eur. J. Neurosci., 27, No. 12, 3257–3272 (2008).

    Article  PubMed  Google Scholar 

  91. X. Wang and N. A. Lambert, “Membrane properties of identified lateral and medial perforant pathway projection neurons,” Neurosci., 117, No. 2, 485–492 (2003).

    Article  CAS  Google Scholar 

  92. A. P. Weiss, D. Goff, D. L. Schachter, T. Ditman, O. Freudenreich, D. Henderson, and S. Heckers, “Fronto-hippocampal function during temporal context monitoring in schizophrenia,” Biol. Psychiatry, 60, No. 11, 1268–1277 (2006).

    Article  PubMed  Google Scholar 

  93. M. P. Witter and D. G. Amaral, “Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex,” J. Comp. Neurol., 307, No. 3, 437–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. K. Wu and L. S. Leung, “Monosynaptic activation of CA3 by the medial perforant path,” Brain Res., 797, No. 1, 35–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. N. L. Xu, C. Q. Ye, M. M. Poo, and X. H. Zhang, “Coincidence detection of synaptic inputs is facilitated at the distal dendrites after long-term potentiation induction,” J. Neurosci., 26, No. 11, 3002–3009 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. A. Ylinen, I. Soltész, A. Bragin, M. Penttonen, A. Sik, and G. Buzsaki, “Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells,” Hippocampus, 5, No. 1, 78–90 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Silkis.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 59, No. 6, pp. 643–659, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silkis, I.G. Involvement of the trisynaptic hippocampal pathway in generating neural representations of object–place associations (an analytical review). Neurosci Behav Physi 41, 117–129 (2011). https://doi.org/10.1007/s11055-011-9388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9388-7

Key Words

Navigation