Skip to main content
Log in

Effects of Memantine on Convulsive Reactions and the Organization of Sleep in Krushinskii–Molodkina Rats with an Inherited Predisposition to Audiogenic Convulsions

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Krushinskii–Molodkina rats, which have a genetic predisposition to audiogenic convulsions, are used as a natural animal model for studies of the actions of anticonvulsants. It is important to understand the extent to which changes in glutamatergic synaptic transmission is involved in the mechanisms producing convulsive states and in the functional organization of the sleep–waking cycle in rats of this strain. The present report describes experiments addressing this, in which i.m. doses of 5 and 10 mg/kg of a noncompetitive NMDA glutamate receptor antagonist of the memantine type were given at different times (30 min, 1, 2, and 3 h) before presentation of sound stimuli (sine-wave tones at 8 kHz, 90 dB). Effects on the latent periods of the initial motor excitation, the appearance of clonic convulsions of different intensities, and, finally, tonic convulsions with limb and tail extension were evaluated. The greatest attenuation of convulsive seizures, to a level consisting only of motor excitation, was obtained in 60% of the rats between 1 and 2 h after administration. There were no differences between the effects of doses of 5 and 10 mg/kg. When doses were given 3 h before sound provocation, convulsive reactions became more marked than at 2 h, though they were nevertheless more marked than in controls. Krushinskii–Molodkina rats with chronically implanted electrodes for recording brain electrical activity were used to study the effects of memantine on the organization of sleep. These experiments showed that the rats’ sleep during the first hour after dosage consisted only of short episodes of superficial slow-wave sleep, and that even this sleep disappeared completely 54.4 ± 4.9 and 39.9 ± 5.2 min after administration of the agent at doses of 5 and 7 mg/kg, respectively. Rats showed a complete absence of sleep for 2 and 2.5 h, respectively, after which episodes of slow-wave sleep reappeared. The first episodes of REM sleep was seen in rats only after 3.3 ± 0.2 and 3.7 ± 0.2 h after memantine injections. The appearance of these episodes provided evidence that the effects of memantine on the activity of the somnogenic system of the animals’ brains were complete and that recovery of the normal organization of the sleep–waking cycle had started. The synchronicity and codirectionality of the blocking action of memantine on sleep organization and measures of audiogenic convulsions in Krushinskii–Molodkina rats is evidence for the involvement of glutamatergic synapses with NMDA receptors in both the regulation of the somnogenic systems and the pathogenesis of epileptiform manifestations in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Vataev and G. A. Oganesyan, “Effects of deprivation of REM sleep in rats with an inherited predisposition to audiogenic convulsive seizures,” Zh. Evolyuts. Biokhim. Fiziol., 40, No. 1, 60–66 (2004).

    CAS  Google Scholar 

  2. S. A. Dolina, B. M. Kogan, and G. V. Tananova, “Catecholamine levels in the striatum, hypothalamus, and adrenals in rats genetically predisposed to convulsive seizures,” Byull. Eksperim. Biol. Med., 93, No. 2, 12–14 (1982).

    CAS  Google Scholar 

  3. I. G. Karmanova and G. A. Oganesyan, Sleep: Evolution and Disorders [in Russian], Nauka, St. Petersburg (1994); [Translation from Russian], University Press of America, Lanham, New York (1999).

    Google Scholar 

  4. N. Ya. Lukomskaya, V. V. Lavrentieva, L. A. Starshinova, E. P. Zhabko, L. V. Gorbunova, T. B. Tikhonova, V. E. Gmiro, and L. G. Magazanik, “Effects of an ionotropic glutamate receptor channel blocker on the development of pentylenetetrazol kindling in mice,” Ros. Fiziol. Zh. im. I. M. Sechenova, 91, No. 11, 1241–1250 (2005).

    CAS  Google Scholar 

  5. N. Ya. Lukomskaya, N. I. Rukoyatkina, and L. G. Magazanik, “Studies of the roles of NMDA and AMPA glutamate receptors in the mechanism of corasol convulsions in mice,” Ros. Fiziol. Zh. im. I. M. Sechenova, 89, No. 3, 292–301 (2003).

    Google Scholar 

  6. L. G. Magazanik, N. Ya. Lukomskaya, N. I. Rukoyatkina, N. I. Gorbunova, V. E. Gmiro, and K. V. Bolshakov, “Comparison of the anticonvulsive activity of organic mono- and dications and their ability to inhibit NMDA and AMPA glutamate receptors,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 9, 1161–1171 (2002).

    Google Scholar 

  7. A. F. Semiokhina, I. B. Fedotova, and I. I. Poletaev, “Krushinskii–Molodkina rats: studies of audiogenic epilepsy and vascular and behavioral pathology,” Zh. Vyssh. Nerv. Deyat., 56, No. 3, 298–316 (2006).

    CAS  Google Scholar 

  8. I. B. Fedotova, A. F. Semiokhina, E. S. Kosacheva, V. G. Bashkatova, and K. S. Raevskii, “Effects of lamotrigine and carbamazepine on the development of audiogenic convulsion responses in Krushinskii–Molodkina rats,” Eksperim. Klin. Farmacol., 59, No. 6, 6–9 (1996).

    CAS  Google Scholar 

  9. I. G. Campbell and I. Feinberg, “Noncompetitive NMDA channel blockade during waking intensely stimulates NREM delta,” J. Pharmacol. Exp. Ther., 276, No. 2, 737–742 (1996).

    CAS  PubMed  Google Scholar 

  10. H. S. Chen and S. A. Lipton, “Pharmacological implications of two distinct mechanisms of interaction of memantine with N-methyl-D-aspartate-gated channels,” J. Pharmacol. Exp. Ther., 314, No. 3, 961–971 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. H. S. Chen and S. A. Lipton, “The chemical biology of clinically tolerated NMDA receptor antagonists,” J. Neurochem., 97, No. 6, 1611–1626 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. H. S. Chen, J. W. Pellegrini, K. S. Aggarwal, S. Z. Lei, S. Warach, F. E. Jensen, and S. A. Lipton, “Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity,” J. Neurosci., 12, 4427–4436 (1992).

    CAS  PubMed  Google Scholar 

  13. S. Crochet, H. Onoe, and K. Sakai, “A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study,” Eur. J. Neurosci., 24, No. 5, 1404–1412 (2006).

    Article  PubMed  Google Scholar 

  14. W. Danysz, C. G. Parson, J. Kornhuber,W. J. Schmidt, and G. Quack, “Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents – preclinical studies,” Neurosci. Biobehav. Res., 21, No. 4, 455–468 (1997).

    Article  CAS  Google Scholar 

  15. R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacol. Rev., 51, No. 1, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  16. C. L. Faingold, M. H. Millan, C. A. Boersma Anderson, and B. S. Meldrum, “Induction of audiogenic seizures in normal and genetically epilepsy-prone rats following focal microinjection of an excitant amino acid into reticular formation and auditory nuclei,” Epilepsy Res., 3, No. 3, 199–205 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. C. L. Faingold, M. E. Randall, D. K. Naritoku, and C. A. Boersma Anderson, “Noncompetitive and competitive NMDA antagonists exert anticonvulsant effects by actions on different sites within the neuronal network for audiogenic seizures,” Exp. Neurol., 119, No. 2, 198–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. J. Filakovszky, S. Kantor, P. Halasz, and G. Bagdy, “8-OH-DPAT and MK-801 affect epileptic activity independently of vigilance,” Neurochem. Int., 38, No. 7, 551–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. T. Ishida and C. Kamei, “Characteristic effects of anti-dementia drugs on rat sleep patterns,” J. Pharmacol. Sci., 109, No. 3, 449–455 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. J. W. Johnson and S. E. Kotermanski, “Mechanism of action of memantine,” Curr. Opin. Pharmacol., 6, No. 1, 61–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. S. E. Kotermanski and J. W. Johnson, “Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine,” J. Neurosci., 29, No. 9, 2774–2779 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. S. A. Lipton, “The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism,” Curr. Alzheimer’s Res., 2, No. 2, 155–165 (2005).

    Article  CAS  Google Scholar 

  23. S. A. Lipton, “Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond,” Nat. Rev. Drug Discov., 5, No. 2, 160–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. W. Loescher, “Pharmacology of glutamate receptor antagonists in the kindling model epilepsy,” Progr. Neurobiology, 54, 721–741 (1998).

    Article  Google Scholar 

  25. P. Mares and A. Mikulecka, “Different effects of two N-methyl-D-aspartate receptor antagonists on seizures, spontaneous behavior and motor performance in immature rats,” Epilepsy Behav., 14, No. 1, 32–39 (2009).

    Article  PubMed  Google Scholar 

  26. J. M. Monti and H. Jantos, “The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking,” Prog. Brain Res., 172, 625–646 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. J. M. Monti and D. Monti, “The involvement of dopamine in the modulation of sleep and waking,” Rev. Sleep Med. Rev., 11, No. 2, 113–133 (2007).

    Article  Google Scholar 

  28. C. G. Parsons,W. Danysz, and G. Quack, “Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist – a review of preclinical data,” Neuropharmacol., 38, No. 6, 735–767 (1999).

    Article  CAS  Google Scholar 

  29. C. G. Parson, K. E. Gilling, and C. Jatzke, “Memantine does not show intracellular block of the NMDA receptor channel,” Eur. J. Pharmacol., 587, No. 1–3, 99–103 (2008).

    Article  Google Scholar 

  30. C. G. Parsons, G. Quack, I. Bresink, L. Baran, E. Przegalinski, W. Kostowski, P. Krzascik, S. Hartmann, and W. Danysz, “Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo,” Neuropharmacol., 34, No. 10, 1239–1258 (1995).

    Article  CAS  Google Scholar 

  31. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1997), Compact 3rd Edition, CD-ROM.

  32. D. E. Pellegrini-Giampietro, J. A. Gorter, M. V. Bennett, and R. S. Zukin, “The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Review,” Trends Neurosci., 20, No. 10, 464–470 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. G. Rammes, R. Rupprecht, U. Ferrari, W. Zieglgansberger, and C. G. Parsons, “The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner,” Neurosci. Lett., 306, No. 1–2, 81–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. S. Samnick, S. Ametamey, K. L. Leenders, P. Vontobel, G. Quack, C. G. Parsons, H. Neu, and P. A. Schubiger, “Electrophysiological study, biodistribution in mice, and preliminary PET evaluation in a rhesus monkey of l-amino-3-[18F]fluoromethyl-5-methyl-adamantane (18F-MEM): a potential radioligand for mapping the NMDA-receptor complex,” Nucl. Med. Biol., 25, No. 4, 323–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. R. Spanagel, B. Eilbacher, and R. Wilke, “Memantine-induced dopamine release in the prefrontal cortex and striatum of the rat – a pharmacokinetic microdialysis study,” Eur. J. Pharmacol., 262, No. 1–2, 21–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. W. S. Stone, D. L. Walker, and P. E. Gold, “Sleep deficits in rats after NMDA receptor blockade,” Physiol. Behav., 52, No. 3, 609–612 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. E. Szabadi, “Drugs for sleep disorders: mechanisms and therapeutic prospects,” Brit. J. Clin. Pharmacol., 61, No. 6, 761–766 (2006).

    Article  CAS  Google Scholar 

  38. J. H. M. Tulen, A. J. Man in’t Veld, K. Mechelse, and F. Boomsma, “Sleep patterns congenital dopamine beta-hydroxylase deficiency,” J. Neurol., 237, No. 2, 98–102 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. W. Wesemann, J. D. Schollmeyer, and G. Sturm, “Distribution of memantine in brain, liver, and blood of the rat,” Arzneimittelforschung, 32, No. 10, 1243–1245 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Vataev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 95, No. 8, pp. 802–812, August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vataev, S.I., Zhabko, E.P., Lukomskaya, N.Y. et al. Effects of Memantine on Convulsive Reactions and the Organization of Sleep in Krushinskii–Molodkina Rats with an Inherited Predisposition to Audiogenic Convulsions. Neurosci Behav Physi 40, 913–919 (2010). https://doi.org/10.1007/s11055-010-9345-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9345-x

Key words

Navigation