Skip to main content
Log in

Features of Central Neurotransmission in Animals in Conditions of Dietary Magnesium Deficiency and After Its Correction

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Magnesium is important in the regulation of neurotransmitter metabolism and the modulation of receptor function in the CNS, including neurotransmitters and receptors involved in the pathogenesis of many mental disorders. The aim of the present work was to perform a pharmacological evaluation of the central mechanisms of action of magnesium salts in the clofelin, phenamine, arecoline, nicotine, apomorphine, and 5-hydroxytryptophan tests in conditions of dietary magnesium deficiency. After reaching the magnesium deficiency state, animals were given oral (via tube) magnesium L-asparaginate and magnesium chloride lone and in combination with vitamin B6, as well as the reference agent Magne B6. Our assessments of phenamine stereotypy in magnesium-deficient animals showed reductions in the latent period by an average of 14.89% and a significant increase in the duration of phenamine stereotypy by an average of 19.44% (from 268.23 ± 8.17 to 320.36 ± 19.90 min) as compared with intact rats. Studies of hyperkinesia induced by 5-hydroxytryptophan showed a two-fold reduction in its extent in the magnesium-deficient group (p ≤ 0.05). Administration of arecoline to magnesium-deficient animals resulted in a statistically significant increase in the latent period from a mean of 92.75 ± 19.35 to 245.17 ± 121.86 sec, with a reduction in the duration of tremor from an average of 1175.58 ± 127.87 to 703.83 ± 89.33 sec (p ≤ 0.05) as compared with intact rats. In terms of its influence on the hypothermic effects of clofelin and apomorphine and the convulsive effect of nicotine, there were no significant differences between the intact group and the magnesium-deficiency animals. Administration of magnesium salts compensated for the magnesium deficiency in plasma and erythrocytes, which was accompanied by recovery of measures in the phenamine, arecoline, and 5-HT tests to levels typical of intact controls. There was a tendency for magnesium L-asparaginate and magnesium chloride combined with pyridoxine to have greater activity, and the efficacies of these treatments was no less than that of reference agent Magne B6. Thus, dietary magnesium deficiency led to impairment of neurotransmission in central serotoninergic, M-cholinergic, and noradrenergic structures and administration of magnesium salts reversed these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Andreeva, Methodological Recommendations for the Study of the Antidepressant Activity of Pharmacological Substances. Handbook for the Experimental (Preclinical) Study of New Pharmacological Substances [in Russian], Moscow (2000).

  2. O. A. Gromova, T. V. Avdeenko, and E. M. Burtsev, “Magnesium deficiency in children with minimal brain dysfunction and its correction with Magne B6,” Klin. Farmakol. Terapiya, 7, No. 3, 52–57 (1998).

    Google Scholar 

  3. V. V. Men’shikov, Laboratory Methods for Clinical Studies [in Russian], Meditsina, Moscow (1987).

    Google Scholar 

  4. A. A. Spasov, I. N. Iezhitsa, M. V. Kharitonova, and M. S. Kravchenko, “Effects of magnesium salts on the formation of depression-like behavior and anxiety in animals in conditions of dietary magnesium deficiency,” Zh. Vyssh. Nerv. Deyat. imeni I. P. Pavlova (in press).

  5. N. Amyard, A. Leyris, C. Monier, H. Frances, R. G. Boulu, and J. G. Henrotte, “Brain catecholamines, serotonin and their metabolites in mice selected for low (MGL) and high (MGH) blood magnesium levels,” Magnes. Res., 8, No. 1, 5–9 (1995).

    PubMed  CAS  Google Scholar 

  6. P. Bac, N. Pages, C. Herrenknecht, C. Dewulf, P. Binet, and J. Burlach, “Effect of various serotoninergically induced manipulations on audiogenic seizures in magnesium-deficient mice,” Magnes. Res., 7, No. 2, 107–115 (1994).

    PubMed  CAS  Google Scholar 

  7. R. M. Bergman, A. Cappiello, A. Anand, D. A. Oren, G. R. Heininger, D. S. Charney, and J. H. Krystal, “Antidepressant effects of ketamine in depressed patients,” Biol. Psychiatry, 47, 351–354 (2000).

    Article  Google Scholar 

  8. A. Bloc, E. Bugnard, and Y. Dunant, “Acetylcholine synthesis and quantal release reconstituted by transfection of mediatophore and choline acetyl transferase cDNAs,” Eur. J. Neurosci., 11, 1523–1534 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. G. Choinard, L. Beauclair, R. Geiser, and P. Etienne, “A pilot study of magnesium aspartate hydrochloride (Magnesiocard) as a mood stabilizer for rapid cycling bipolar affective disorder patients,” Prog. Neuropsychopharmacol. Biol. Psychiatr, 14, 171–180 (1990).

    Article  Google Scholar 

  10. J. G. Chutkow and G. M. Tyce, “Brain norepinephrine, dopamine, and 5-hydroxytryptamine in magnesium-deprivation encephalopathy in rats,” J. Neural Transm., 44, No. 4, 297–302 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. I. M. Cox, M. J. Campbell, and D. Dowson, “Red blood cell magnesium and chronic fatigue syndrome,” Lancet, 337, 757–760 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. S. Decollogne, A. Tomas, C. Lecerf, E. Adamowicz, and M. Seman, “NMDA receptor complex blockade by oral administration of magnesium: comparison with MK-801,” Pharmacol. Biochem. Behav., 58, No. 1, 261–268 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. J. Durlach, “Données actuelles sur les mécanismes de synergie entre vitamine B6 et magnesium,” J. Méd. Besançon, 5, 349–359 (1968).

    Google Scholar 

  14. J. Durlach, Magnesium in Clinical Practice, John Libbey, London (1988).

    Google Scholar 

  15. J. Durlach, V. Durlach, P. Bac, and M. Bara, “Magnesium and therapeutics,” Magnes. Res., 7, No. 3–4, 313–328 (1994).

    PubMed  CAS  Google Scholar 

  16. H. El-Beheiry and E. Puil, “Effects of hypomagnesia on transmitter actions in neocortical slices,” Brit. J. Pharmacol., 101, No. 4, 1006–1010 (1990).

    CAS  Google Scholar 

  17. M. Firoz and M. Graber, “Bioavailability of US commercial magnesium preparations,” Magnes. Res., 14, No. 4, 257–262 (2001).

    PubMed  CAS  Google Scholar 

  18. J. E. Holl, A. V. Resurreccion, L. E. Park, and W. O. Caster, “Barbiturate and amphetamine activity in rats fed a magnesium-deficient diet,” Res. Commun. Pathol. Pharmacol., 22, No. 3, 501–512 (1978).

    CAS  Google Scholar 

  19. I. N. Iezhitsa, A. A. Spasov, M. S. Kravchenko, M. V. Kharitonova, A. A. Ozerov, and I. Yu. Pavlova, “Comparative study of magnesium salts’ bioavailability in rats fed with magnesium-deficient diet. Abstracts of the 11th International Magnesium Symposium & Joint Meeting of the Japanese Society for Magnesium Research,” J. Jap. Soc. Magnes. Res., 25, No. 2, 99–153 (2006).

    Google Scholar 

  20. R. A. Janssen and C. Y. Niemegeers, “Is it possible to predict the clinical effects of neuroleptic drugs from animal data? Part IV,” Arzneimittel. Forsch., 17, No. 7, 841–854 (1967).

    CAS  Google Scholar 

  21. J. D. Kanofsky and R. Sandyk, “Magnesium deficiency in chronic schizophrenia,” Int. J. Neurosci., 61, No. 1–2, 87–90 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. G. K. Korov, N. J. Birch, P. Steadman, and R. G. Ramsey, “Plasma magnesium levels in a population of psychiatric patients: correlations with symptoms,” Neuropsychobiology, 30, No. 2–3, 73–78 (1994).

    Article  Google Scholar 

  23. J. Levine, D. Stein, A. Rapoport, and L. Kurtzman, “High serum and cerebrospinal fluid Ca/Mg ratio in recently hospitalized acutely depressed patients,” Neuropsychobiology, 39, 63–70 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. M. Mayer, G. L. Westbrook, and P. B. Guthrie, “Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons,” Nature, 309, 261–263 (1984).

    Article  PubMed  CAS  Google Scholar 

  25. M. F. McCarty, “High-dose pyridoxine as an ‘anti-stress’ strategy,” Med. Hypotheses, 54, No. 5, 803–807 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. R. M. Morris, “Brain and CSF magnesium concentrations during magnesium deficit in animals and humans: neurological symptoms,” Magnes. Res., 5, 303–313 (1992).

    PubMed  CAS  Google Scholar 

  27. M. Mousain-Bosc,M. Roche, A. Polge, D. Pradal-Prat, J. Rapin, and J. P. Bali, “Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6 I. Attention deficit hyperactivity disorders,” Magnes. Res., 19, No. 1, 46–52 (2006).

    PubMed  CAS  Google Scholar 

  28. H. Murck, “Atypical depression spectrum disorder-neurobiology and treatment,” Acta Neuropsychiatrica, 15, 227–241 (2003).

    Article  Google Scholar 

  29. H. Murck, “Magnesium and affective disorders,” Nutr. Neurosci., 5, 375–389 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. C. S. Paulose, K. Dakshinamurti, S. Packer, and N. L. Stephens, “Sympathetic stimulation and hypertension in the pyridoxine-deficient adult rat,” Hypertension, 11, No. 4, 387–391 (1988).

    PubMed  CAS  Google Scholar 

  31. E. Planells, A. Lerma, N. Sanchez-Morito, P. Aranda, and J. Lopis, “Effect of magnesium deficiency on vitamin B2 and B6 status in the rat,” J. Amer. Coll. Nutr., 16, No. 4, 352–356 (1997).

    CAS  Google Scholar 

  32. E. Poleszak and G. Nowak, “Magnesium in pathophysiology and therapy of affective disorders,” J. Element (Biuletyn Magnezologiczny), 11, No. 3, 389–397 (2006).

    Google Scholar 

  33. H. H. Rasmussen, P. B. Mortensen, and I. W. Jensen, “Depression and magnesium deficiency,” Int. J. Psychiatry Med., 19, No. 1, 57–63 (1989).

    PubMed  CAS  Google Scholar 

  34. S. K. Sharma and K. Dakshinamurti, “Effects of serotonergic agents on plasma prolactin levels in pyridoxine-deficient adult male rats,” Neurochem. Res., 19, No. 6, 687–692 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. N. Singewalk, C. Sinner, A. Hetzenauer, S. B. Sartori, and H. Murck, “Magnesium-deficient diet alters depression- and anxiety-related behavior in mice-influence of desipramine and Hypericum perforatum extract,” Neuropharmacology, 47, 1189–1197 (2004).

    Google Scholar 

  36. P. Skolnick, “Modulation of glutamate receptors: strategies for the development of novel antidepressants,” Amino Acids, 23, 153–159 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Spasov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 7, pp. 822–833, July, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spasov, A.A., Iezhitsa, I.N., Kravchenko, M.S. et al. Features of Central Neurotransmission in Animals in Conditions of Dietary Magnesium Deficiency and After Its Correction. Neurosci Behav Physi 39, 645–653 (2009). https://doi.org/10.1007/s11055-009-9182-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9182-y

Key words

Navigation