Skip to main content
Log in

Effects of Corticoliberin on Synaptic Transmission in Rat Olfactory Cortex Slices in a Water Immersion Model of Depression

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Corticoliberin (corticotrophin-releasing factor, CRF, CRH) is an active regulator of endocrine, autonomic, and immune functions in stress, as well as a mediator of anxiety, determining the behavioral stress response. The present report describes studies of its action on neuron activity evoked by microstimulation of olfactory cortex slices. Behavioral testing in a T maze was used to select individuals with a passive behavioral strategy from a population of Wistar rats, and the animals were subjected to water immersion. Olfactory cortex slices were prepared 10 days later and evoked focal potentials were recorded on perfusion with medium containing corticoliberin (0.1 μM). Among active rats, 60% of slices retained high excitability after stress, and corticoliberin produced only insignificant reductions in the amplitudes of excitatory potentials in these slices, simultaneously increasing the amplitudes of inhibitory potentials. Low excitability was found in 40% of slices from active stressed rats, and corticoliberin had a significant inhibitory effect in these slices. Addition of corticoliberin to the incubation medium used for slices from passive rats with initially low excitability led to complete blockade of synaptic transmission. These data support the involvement of corticoliberin in the development of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Mironova, E. A. Rybnikova, V. V. Rakitskaya, and V. G. Shalyapina, “Corticoliberin contents in the hypothalamus of rats with different strategies of adaptive behavior in post-stress depression,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90¸ No. 9, 1161–1163 (2004).

    CAS  Google Scholar 

  2. M. I. Mityushov, N. A. Emel’yanov, A. A. Mokrushin, I. A. Voiner, and T. R. Bagaeva, Living Brain Slices [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  3. O. G. Semenova, V. V. Rakitskaya, and V. G. Shalyapina, “Blockade of corticosterone receptors prevents the development of post-stress psychopathology in rats with an active strategy of adaptive behavior,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 11, 1345–1349 (2006).

    CAS  Google Scholar 

  4. O. G. Semenova, M. G. Semenova, V. V. Rakitskaya, and V. G. Shalyapina, “Psychomotor reactivity to corticoliberin in rats with active and passive strategies of adaptive behavior in a water immersion model of depression,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 8, 1016–1021 (2006).

    CAS  Google Scholar 

  5. V. G. Shalyapina, “Corticoliberin in the regulation of adaptive behavior and the pathogenesis of post-stress psychopathology,” in: Basic Neuroendocrinology [in Russian], Élbi, St. Petersburg (2005), pp. 84–146.

    Google Scholar 

  6. V. G. Shalyapina, E. A. Vershinina, V. V. Rakitskaya, L. Yu. Ryzhova, M. G. Semenova, and O. G. Semenova, “Changes in adaptive behavior in active and passive Wistar rats in a water immersion model of depression,” Zh. Vyssh. Nerv. Deyat., 56, No. 4, 543–547 (2006).

    Google Scholar 

  7. V. G. Shalyapina, E. A. Vershinina, V. V. Rakitskaya, L. Yu. Ryzhova, M. G. Semenova, and O. G. Semenova, “Changes in adaptive behavior in active and passive Wistar rats in a water immersion model of depression,” Zh. Vyssh. Nerv. Deyat., 56, No. 4, 543–547 (2006).

    Google Scholar 

  8. V. G. Shalyapina, A. A. Mokrushina, and N. N. Nesterov, “Corticoliberin protects neurons in living olfactory cortex slices from the negative effects of dysfunctins,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 3, 332–338 (2002).

    Google Scholar 

  9. V. G. Shalyapina,V. V. Rakitskaya, and E. I. Petrova, “Corticotropinreleasing hormone in changes in the behavioral sequelae of unavoidable stress in active and passive rats,” Zh. Vyssh. Nerv. Deyat., 55, No. 2, 241–244 (2005).

    CAS  Google Scholar 

  10. V. G. Shalyapina, V. V. Rakitskaya, M. G. Semenova, and O. G. Semenova, “Hormonal function of the hypophyseal-adrenocortical system in the pathogenetic heterogeneity of post-stress depression,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 4, 480–487 (2006).

    Google Scholar 

  11. M. W. Croighead, H. Bouten, R. M. Middlehurst, and S. M. Allan, “Influence of corticotrophin-releasing factor on neuronal cell death in vitro and in vivo,” Brain Res., 881, No. 2, 139–143 (2000).

    Article  Google Scholar 

  12. E. R. De Kloet, “Hormones and stressed brain,” Ann. N.Y. Acad. Sci., 1018, 1–15 (2004).

    Article  PubMed  Google Scholar 

  13. P. W. Gold, M. L. Wong, G. P. Chroussos, and J. Liciano, “Stress system abnormalities in melancholic and atypical depression: molecular pathophysiological and therapeutic implication,” Med. Psychiatry, 1, 257–264 (1996).

    CAS  Google Scholar 

  14. W. H. Hoffman and L. B. Haberly, “Bursting induces persistent All-or-None EPSPs by an NMDA-dependent process in piriform cortex,” J. Neurosci., 9, No. 1, 206–215 (1989).

    PubMed  CAS  Google Scholar 

  15. M. Joels, J. Krugers, and J. M. Verkuyl, “Modulation of glutamatergic and GABA-ergic neurotransmission by corticosteroid hormones and stress,” in Handbook of Stress and Brain, T. Steekler, N. H. Kabia, and J. M. Reul (eds.) (2005), Vol. 15, pp. 525–544.

  16. M. W. Jung, J. Larson, and G. Lynch, “Role of NMDA and non-NMDA receptors in synaptic transmission in rat piriform cortex,” Exptl. Brain Res., 82, No. 5, 451–455 (1990).

    CAS  Google Scholar 

  17. J. W. Kaskow, D. Daker, and N. C. Geracioti, “Corticotropin-releasing hormone in depression and post-traumatic stress disorder,” Peptides, 22, 845–851 (2001).

    Article  Google Scholar 

  18. C. B. Nemeroff, “The corticotropin-releasing factor (CRF) hypothesis of depression: finding and new directions,” Mol. Psychiatry, 1, 336–342 (1996).

    PubMed  CAS  Google Scholar 

  19. F. C. Raadsheer,W. S. Hoogendijk, and F. C. Stam, “Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients,” Neuroendocrinol., 60, 433–435 (1994).

    Article  Google Scholar 

  20. R. M. Sapolsky, L. Krey, and B. S. McEwen, “The neurobiology of stress and aging; the glucocorticoids cascade hypothesis,” Endocrinol. Rev., 7, 284–301 (1986).

    Article  CAS  Google Scholar 

  21. K. Takagi, Y. Kasuya, and K. Watanabe, “Studies on the drug for peptide ulcer, a reliable method for production stress ulcer,” Chem. Pharmacol. Bull., 12, 465–473 (1964).

    CAS  Google Scholar 

  22. G. F. Tseng and L. B. Haberly, “Characterization of synaptically mediated fast and slow inhibitory processes in piriform cortex in an in vitro slice preparation,” J. Neurophysiol., 59, No. 5, 1352–1376 (1988).

    PubMed  CAS  Google Scholar 

  23. D. T. Usually, F. L. Chen, and L. K. Takahashi, “Rapid stress induced elevation in corticotrophin-releasing hormone mRNA in rat central amygdaloidal nucleus and hypothalamic paraventricular nucleus: an in situ hybridization analysis,” Brain Res., 788, 305–310 (1988).

    Google Scholar 

  24. R. Yuhuda, “Advances in understanding neuroendocrine alteration in PTSD and their therapeutic implication,” Ann. N.Y. Acad. Sci., 1071, 137–166 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Shalyapina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 8, pp. 952–961, August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalyapina, V.G., Mokrushin, A.A., Khama-Murad, A.K. et al. Effects of Corticoliberin on Synaptic Transmission in Rat Olfactory Cortex Slices in a Water Immersion Model of Depression. Neurosci Behav Physi 39, 701–707 (2009). https://doi.org/10.1007/s11055-009-9176-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9176-9

Key words

Navigation