Skip to main content
Log in

Apoptosis and the Receptor Specificity of Its Mechanisms During the Neurotoxic Action of Glutamate

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The ratio of necrosis to apoptosis and the mechanisms of apoptosis were studied during neurodegeneration induced by glutamate and selective agonists of glutamate receptors – N-methyl-D-aspartate (NMDA) and kainate. Experiments were performed on primary cultures (seven days in vitro) of rat cerebral cortex neurons. Apoptosis and necrosis were identified using a vital fluorescence rapid test with staining with acridine orange and ethidium bromide. Immunocytochemistry in combination with confocal microscopy was used to visualize apoptotic proteins. Agonists (240 min) caused neuron death via both processes, though the proportion of necrotic cells when neurodegeneration was induced by NMDA and kainate was significantly less than when neurodegeneration was induced with glutamate. The neurotoxic effect of 3 mM glutamate was mediated via α-amino-3-(3-hydroxy-5-methylisoxazole-4-yl)propionate (AMPA) and kainate receptors, as it was blocked by 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX). Activation of NMDA receptors led to the development of apoptosis without involvement of caspases, due to the direct action of apoptosis-inducing factor (AIF) on neuron nuclei. Activation of AMPA-kainate receptors was accompanied by the development of apoptosis via the caspase-dependent pathway. Thus, these data identified the receptor dependence of the mechanisms of apoptosis during the neurotoxic action of glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Antonov, “Neurotransmitter carriers: receptor, transport, and channel functions,” Zh. Évolyuts. Biokhim. Fiziol., 37, No. 4, 248–252 (2001).

    CAS  Google Scholar 

  2. S. M. Antonov, E. V. Mironova, and A. A. Lukina, “Control of the neurotoxic action of glutamate on neurons of different ages by Mg2+ blockade of NMDA receptors,” Biol. Membrany, 23, No. 2, 129–138 (2006).

    CAS  Google Scholar 

  3. A. A. Boldyrev, “Oxidative stress and the brain,” SOZh, 4, 21–28 (2001).

    Google Scholar 

  4. E. V. Mironova and A. A. Lukina, “Dynamics of the neurodegeneration of neurons in the rat cerebral cortex evoked by toxic doses of glutamate,” Vestn. Molod. Uchen. Ros. Akad. Nauk, 2, 20–25 (2004).

    Google Scholar 

  5. E. V. Mironova, A. A. Lukina, N. B. Brovtsyna, A. I. Krivchenko, and S. M. Antonov, “Types of glutamate receptor determining the concentration dependence of glutamate neurotoxicity on rat cerebral cortex neurons,” Zh. Évolyuts. Biokhim. Fiziol., 42, No. 6, 559–566 (2006).

    CAS  Google Scholar 

  6. S. N. Skachkov, Yu. V. Kucheryavyi, S. M. Antonov, V. L. Pirson, K. J. Nicholls, A. Reichenback, and M. D. Iton, “Potassium channels with a domain consisting of two pore-forming loops and influx rectifying channels: regulation of the external K+ concentration by retinal glial cells (Müller) and cortical astrocytes,” Biol. Membrany, 23, No. 2, 85–100 (2006).

    CAS  Google Scholar 

  7. J. M. Abrams, K. White, L. I. Fessler, and H. Steller, “Programmed cell death during Drosophila embryogenesis,” Development, 117, 29–43 (1993).

    PubMed  CAS  Google Scholar 

  8. S. M. Antonov, V. E. Gmiro, and J. W. Johnson, Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block,” Nat. Neurosci., 1, No. 6, 451–461 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. S. M. Antonov and J. W. Johnson, “Voltage-dependent interaction of open-channel molecules with gating of NMDA receptors in rat cortical neurons,” J. Physiol., 493, No. 2, 425–455 (1996).

    PubMed  CAS  Google Scholar 

  10. S. M. Antonov and J. W. Johnson, “Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+,” Proc. Natl. Acad. Sci. USA, 96, No. 25, 14571–14576 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. S. M. Antonov and L. G. Magazanik, “Intense non-quantal release of glutamate in an insect neuromuscular junction,” Neurosci. Lett., 93, 204–208 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. S. Bates and K. H. Vousden, “Mechanisms of p53-mediated apoptosis,” Cell Mol. Life Sci., 55, No. 1, 28–37 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. H. U. Bergmeyer and E. Bernt, “Lactate dehydrogenase UV assay with pyruvate and NADH,” in: Methods of Enzymatic Analysis [in Russian], H. U. Bergmeyer (ed.), Academic Press, New York (1974), Vol. 2, pp. 574–579.

    Google Scholar 

  14. P. Cafforio, A. Romito, M. A. Grizzuti, and F. Silvestris, “Methods for assessing programmed cell death,” Recent Prog. Med., 87, No. 7–8, 366–373 (1996).

    CAS  Google Scholar 

  15. R. Dingledine, K. Borges, D. Bowie, and S. Traymelis, “The glutamate receptor ion channels,” Pharmacol. Rev., 51, 7–61 (1999).

    PubMed  CAS  Google Scholar 

  16. R. A. Gottlieb, H. A. Giesing, J. Y. Zhu, R. L. Engler, and B. M. Babior, “Cell acidification in apoptosis: granulocyte colony-stimulating factor delays programmed cell death in neutrophils by up-regulating the vacuolar H(+)-ATPase,” Proc. Natl. Acad. Sci. USA, 92, 5965–5968 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. A. J. Gibb and D. Colquhoun, “Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus,” J. Physiol., 456, 143–179 (1992).

    PubMed  CAS  Google Scholar 

  18. Y. Gavrieli, Y. Sherman, and S. A. Ben-Sasson, “Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation,” J. Cell Biol., 119, 493–501 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Hatanaka, K. Suzuki, and Y. Kawasaki, “A role of peroxides in Ca2+ ionophore-induced apoptosis in cultured rat cortical neurons,” Biochem. Biophys. Res. Commun., 227, No. 2, 513–518 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. S. J. Hong, T. M. Dawson, and V. L. Dawson, “Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling,” Trends Pharmacol. Sci., 25, No. 5, 259–264 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. N. V. Jonston, “Neuronal death in development, ageing and disease,” Neurobiol. Ageing, 15, No. 2, 235–236 (1994).

    Article  Google Scholar 

  22. B. Khodorov, “Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurons,” Progr. Biophys. Mol. Biol., 86, No. 2, 279–351 (2004).

    Article  CAS  Google Scholar 

  23. N. W. Kleckner and B. S. Pallotta, “Burst kinetics of single NMDA receptor currents in cell-attached patches from rat brain cortical neurons in culture,” J. Physiol., 486, 411–426 (1995).

    PubMed  CAS  Google Scholar 

  24. J. Y. Koh and D. W. Choi, “Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay,” J. Neurosci. Meth., 20, 83–90 (1987).

    Article  CAS  Google Scholar 

  25. J. Li and A. Eastman, “Apoptosis in an interleukin-2-dependent cytotoxic T lymphocyte cell line is associated with intracellular acidification. Role of the Na(+)/H(+)-antiport,” J. Biol. Chem., 270, 3203–3211 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. E. V. Mironova, A. A. Evstratova, and S. M. Antonov, “A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using the confocal microscopy on neurons in culture,” J. Neurosci. Meth., 163, 1–8 (2007).

    Article  Google Scholar 

  27. F. D. Miller, C. D. Pozniak, and G. S. Walsh, “Neuronal life and death: an essential role for the p53 family,” Cell Death Differ., 7, No. 10, 880–888 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. S. Mpoke and J. Wolfe, “Differential staining of apoptotic nuclei in living cells: application to macronuclear elimination in Tetrahymena,” J. Histochem. Cytochem., 45, 675–683 (1997).

    PubMed  CAS  Google Scholar 

  29. J. Noraberg, B. W. Kristensen, and J. Zimmer, “Markers for neuronal degeneration in organotypic slice cultures,” Brain Res. Protoc., 3, 278–290 (1999).

    Article  CAS  Google Scholar 

  30. J. W. Oiney, “Excitatory transmitter neurotoxicity,” Aging, 15, No. 2, 259–260 (1994).

    Google Scholar 

  31. M. K. Patterson, Jr., “Measurement of growth and viability of cells in culture,” Meth. Enzymol., 58, 141–152 (1979).

    Article  PubMed  Google Scholar 

  32. K. L. Philpott, M. J. McCarthy, D. Backer, C. Gatchalian, and L. L. Rubin, “Morphological and biochemical changes in neurons: apoptosis versus mitosis,” Eur. J. Neurosci., 8, No. 9, 1906–1915 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. L. Pulliam, M. Stubblebine, and W. Hyun, “Quantification of neurotoxicity and identification of cellular subsets in a three-dimensional brain model,” Cytometry, 32, No. 1, 66–69 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. S. Rabizadeh, J. Oh, L. T. Zhong, J. Yang, C. M. Bitler, L. L. Butcher, and D. E. Bredesen, “Induction of apoptosis by the low-affinity NGF receptor,” Science, 261, 345–348 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. D. D. Schoepp and A. I. Sacaan, “Metabotropic glutamate receptors and neuronal degenerative disorders,” Neurobiol. Aging, 15, No. 2, 261–263 (1994).

    Article  PubMed  CAS  Google Scholar 

  36. A. Tapia, “NMDA-receptor activation stimulates phospholipase A2 and somatostatin release from rat cortical neurons in primary cultures,” Eur. J. Pharmacol., 225, No. 2, 253–262 (1992).

    Google Scholar 

  37. T. F. Uliasz and S. J. Hewett, “A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture,” J. Neurosci. Meth., 100, No. 1–2, 157–163 (2000).

    Article  CAS  Google Scholar 

  38. H. Wang, S. W. Yu, D. W. Koh, J. Lew, C. Coombs, W. Bowers, H. J. Federoff, G. G. Poirier, T. M. Dawson, and V. L. Dawson, “Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death,” J. Neurosci., 24, No. 48, 10963–10973 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. C. M. Waters, “Mechanisms of neuronal cell death. An overview,” Mol. Chem. Neuropathol., 28, No. 1–3, 145–151 (1995).

    Google Scholar 

  40. K. White, M. E. Grether, J. M. Abrams, L. Young, K. Farrell, and H. Steller, “Genetic control of programmed cell death in Drosophila,” Science, 264, 677–678 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. L. Wise-Faberowski, R. D. Pearlstein, and D. S. Warner, NMDA-induced apoptosis in mixed neuronal/glial cortical cell cultures: the effects of isoflurane and dizocilpine,” J. Neurosurg. Anesthesiol., 18, No. 4, 240–246 (2006).

    Article  PubMed  Google Scholar 

  42. A. Y. Xiao, M. Homma, X. Q. Wang, X. Wang, and S. P. Yu, “Role of K(+) efflux in apoptosis induced by AMPA and kainate in mouse cortical neurons,” Neurosci., 108, No. 1, 61–67 (2001).

    Article  CAS  Google Scholar 

  43. S. W. Yu, H. Wang, M. F. Poitras, C. Coombs,W. J. Bowers, H. J. Federoff, G. G. Poirier, T. M. Dawson, and V. L. Dawson, “Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor,” Science, 297, No. 5579, 259–263 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Antonov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 4, pp. 380–393, April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evstratova, A.A., Mironova, E.V., Dvoretskova, E.A. et al. Apoptosis and the Receptor Specificity of Its Mechanisms During the Neurotoxic Action of Glutamate. Neurosci Behav Physi 39, 353–362 (2009). https://doi.org/10.1007/s11055-009-9141-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9141-7

KEY WORDS

Navigation