Skip to main content

Advertisement

Log in

Organization of Interneuronal Connections in the Nucleus Accumbens in “Impulsive” and “Self-Controlled” Behavior in Cats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

In behavioral experiments, cats placed in a situation of choosing between a high-value time-delayed and a low-value rapid food reinforcement elected to wait for the preferred reward (they demonstrated “selfcontrol”) or to obtain the worse reward quickly (they demonstrated impulsive behavior). On the basis of the selected behavioral strategy, the cats were divided into three groups – “impulsive,” “ambivalent,” and “self-controlled.” Cross-correlation analysis was used to assess the linked activity of cells in the nucleus accumbens, which reflects the nature of interactions between close-lying neurons. In cats with self-control, interneuronal interactions appeared in a significantly larger proportion of cases than in impulsive cats. In combinations resulting in long-latency reactions, cats with self-controlled and impulsive behavior showed no significant difference in the occurrence frequency of interneuronal interactions. The numbers of interneuronal interactions were greater during erroneous responses as compared with correctly performed reactions in animals of the different groups. These data indicate a key role for the interrelated activity of nucleus accumbens neurons in organizing the pattern of long-latency responses typical of selfcontrolled behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Bukh-Viner, I. V. Volkov, and G. Kh. Merzhanova, “Spike ‘Collector’,” Zh. Vyssh. Nerv. Deyat., 40, No. 6, 1194–1199 (1990).

    CAS  Google Scholar 

  2. G. A. Grigor’yan and G. Kh. Merzhanova, “Reflection of individual typological differences in various phases of the learning process and accompanying changes in dopamine transmission in the mesolimbic system of the brain,” Zh. Vyssh. Nerv. Deyat., 56, No. 1, 22–37 (2006).

    Google Scholar 

  3. G. Kh. Merzhanova, “Local and distributed neural networks and individuality,” Ros. Fiziol. Zh., 87, No. 6, 873–884 (2001).

    Google Scholar 

  4. G. Kh. Merzhanova, É. E. Dolbakyan, and V. I. Khokhlova, “Organization of frontohippocampal neural networks in cats during different types of voluntary behavior,” Zh. Vyssh. Nerv. Deyat., 54, No. 4, 508–518 (2004).

    Google Scholar 

  5. I. A. Smirnitskaya, A. A. Frolov, and G. Kh. Merzhanova, “A model for reward selection based on reinforcement learning theory,” Zh. Vyssh. Nerv. Deyat., 57, No. 2, 133–143 (2007).

    Google Scholar 

  6. M. Abeles and Y. Prut, “Spatio-temporal firing patterns in the frontal cortex of behaving monkeys,” J. Physiol. (France), 90. No. 3–4, 249–250 (1996).

    CAS  Google Scholar 

  7. H. Bergman, A. Feingold, A. Nini, A. Raz, H. Slovin, M. Abeles, and E. Vaadia, “Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates,” Trends Neurosci., 21, 32–38 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. R. N. Cardinal, “Neural systems implicated in delayed and probabilistic reinforcement,” Neural Netw., 19, No. 8, 1277–1301 (2006).

    Article  PubMed  Google Scholar 

  9. K. P. Datla, R. G. Ahier, A. M. Young, J. A. Gray, and M. H. Joseph, “Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat,” Eur. J. Neurosci., 16, No. 10, 1987–1993 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. J. J. Day, R. A. Wheeler, M. F. Roitman, and R. M. Carelli, “Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm,” Eur. J. Neurosci., 23, No. 5, 1341–1351 (2006).

    Article  PubMed  Google Scholar 

  11. R. A. Depue and P. F. Collins, “Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion,” Behav. Brain Sci., 22, No. 3, 491–569 (1999).

    PubMed  CAS  Google Scholar 

  12. I. E. Espinosa and G. L. Gerstein, “Cortical auditory neuron interactions during presentation of 3-tone sequences: effective connectivity,” Brain Res., 450, No. 1–2, 39–50 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. J. L. Evenden, “Varieties of impulsivity,” Psychopharmacology, 146, 348–361 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. U. G. Gassanov, G. Kh. Merzhanova, and A. G. Galashina, “Interneuronal relations within and between cortical areas during conditioning in cats,” Behav. Brain Res., 15, 137–146 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. J. E. Mazur, “Choice, delay, probability and conditioned reinforcement,” Anim. Learn. Behav., 25, 131–147 (1997).

    Google Scholar 

  16. K. Miyazaki, K. W. Miyazaki, and G. Matsumoto, “Different representation of forthcoming reward in nucleus accumbens and medial prefrontal cortex,” Neuroreport, 15, No. 4, 721–726 (2004).

    Article  PubMed  Google Scholar 

  17. J. P. Moore, J. P. Segundo, G. H. Perkel, and H. Levitan, “Statistical signs of synaptic interaction in neurons,” Biophys. J., 10, No. 9, 876–900 (1970).

    Article  PubMed  CAS  Google Scholar 

  18. K. Nakamura, M. R. Roesch, and C. R. Olson, “Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict,” J. Neurophysiol., 93, No. 2, 884–908 (2005).

    Article  PubMed  Google Scholar 

  19. F. Reinoso-Suarez, Topographischer Hirnatlas der Katze (Für experimental-physiologische Untersuchungen), Herausgegeben von A. Merck, Darmstadt (1961).

    Google Scholar 

  20. J. B. Richards, S. H. Mitchell, H. de Wit, and L. S. Seiden, “Determination of discount functions in rats with an adjustingamount procedure,” J. Exptl. Anal. Behav., 67, No. 3, 353–366 (1997).

    Article  CAS  Google Scholar 

  21. Y. Sakurai, “How do cell assemblies encode information in the brain?” Neurosci. Biobehav. Rev., 23, No. 6, 785–796 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. I. D. Salamone, M. Correa, A. Farrar, and S. M. Mingote, “Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits,” Psychopharmacology (Berlin), 191, No. 3, 461–482 (2007).

    Article  CAS  Google Scholar 

  23. W. Schultz and A. Dickinson, “Neuronal coding of prediction errors,” Ann. Rev. Neurosci., 23, 473–500 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. W. Schultz, L. Tremblay, and J. R. Hollerman, “Changes in behavior-related neuronal activity in the striatum during learning,” Trends Neurosci., 26, No. 6, 321–328 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. K. Toyama, “The structure-functional problem in visual-cortical circuitry studied by cross-correlation techniques and multi-channel recording,” in: Neuronal Cooperativity, J. Kruger (ed.), Springer-Verlag, Berlin (1991).

    Google Scholar 

  26. S. Tsujimoto and T. Sawaguchi, “Neuronal activity representing temporal prediction of reward in the primate prefrontal cortex,” Neurophysiology, 93, No. 6, 3687–3692 (2005).

    Article  PubMed  Google Scholar 

  27. E. Vaadia, E. Ahissar, H. Bergman, and Y. Lavner, “Correlated activity of neurons: a neural code for higher brain functions,” in: Neuronal Cooperativity, J. Kruger (ed.), Springer-Verlag, Berlin (1991), pp. 249–276.

    Google Scholar 

  28. K. Watanabe, S. Igaki, and S. Funahashi, “Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task,” Neural Netw., 19, No. 8, 1203–1222 (2006).

    Article  PubMed  Google Scholar 

  29. D. I. Wilson and E. M. Bowman, “Rat nucleus accumbens neurons predominantly respond to the outcome-related properties of conditioned stimuli rather than their behavioral-switching properties,” J. Neurophysiol., 94, No. 1, 49–61 (2005).

    Article  PubMed  Google Scholar 

  30. A. M. Young, “Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats,” J. Neurosci. Meth., 138, No. 1–2, 57–63 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kh. Merzhanova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 58, No. 2, pp. 172–182, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleshova, E.P., Dolbakyan, É.E., Grigor’yan, G.A. et al. Organization of Interneuronal Connections in the Nucleus Accumbens in “Impulsive” and “Self-Controlled” Behavior in Cats. Neurosci Behav Physi 39, 387–394 (2009). https://doi.org/10.1007/s11055-009-9138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9138-2

Key Words

Navigation