Skip to main content
Log in

Natural activation of caspase-3 is required for the development of operant behavior in postnatal ontogenesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We have previously demonstrated transient increases in caspase-3 activity in the hippocampus of rat pups from age 17 days. We report here our studies on the effects of inhibition of caspase-3 during this period on the acquisition of a two-way avoidance reaction. Rat pups received intracerebroventricular doses of the caspase-3 inhibitor Z-DEVD-FMK On postnatal day 18. Control animals of the same age received the inactive peptide Z-FA-FMK or isotonic saline solution. Inhibition of caspase-3 during the period of its natural activation in the hippocampus during early ontogenesis was found to impair the development of operant behavior in rats. This was apparent as a reduction in the efficiency of learning during acquisition of active avoidance reactions and decreases in the numbers of intersignal reactions. Administration of the inhibitor had no specific action on the types of conditioned reflex activity less associated with operant learning. Thus, there were no differences between the experimental and control groups in the numbers of emotional reactions to the conditioned stimulus. The number of orientational-investigative conditioned reactions also showed no change after administration of Z-DEVD-FMK. On the background of the reduction in the efficiency of the acquisition of the conditioned active avoidance reflex, the number of incomplete acts, in contrast to other types of conditioned reactions, increased significantly after administration of Z-DEVD-FMK, which is evidence for the persistence of the ability to form associative connections between activation of the conditioned signal and the need to move to the other sector. The difficulty in these animals arose at the decision-taking stage on choosing the appropriate form of behavior. Changes in orientational-investigative behavior were not associated with inhibition of caspase-3 during the critical period of development, as the effects of Z-DEVD-FMK and Z-FA-FMK were similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Balaban and N. V. Gulyaeva, “The common nature of the molecular mechanisms of neuroplasticity and neuropathology: an integrative approach,” Ros. Fiziol. Zh. 92, No. 2, 145–151 (2006).

    CAS  Google Scholar 

  2. N. V. Gulyaeva, “Te non-apoptotic functions of caspase-3_in the nervous system,” Biokhimiya, 68, No. 11, 1459–1470 (2003).

    Google Scholar 

  3. I. E. Kudryashov, A. A. Yakovlev, I. V. Kudryashova, and N. V. Gulyaeva, “Inhibition of caspase-3_blocks long-term potentiation in hippocampal slices,” Zh. Vyssh. Nerv. Deyat., 53, No. 5, 537–540 (2003).

    CAS  Google Scholar 

  4. I. V. Kudryashova, “Responses of hippocampal neurons at different stages of acquisition of conditioned reflex avoidance in rats,” Zh. Vyssh. Nerv. Deyat., 51, No. 2, 182–188 (2001).

    Google Scholar 

  5. I. V. Kudryashova, “Postnatal development of conditioned reflex behavior: comparison of the maturation periods of plastic processes in the hippocampus of rats,” Zh. Vyssh. Nerv. Deyat., 54, No. 5, 666–672 (2004).

    Google Scholar 

  6. M. Yu. Stepanichev, I. V. Kudryashova, A. A. Yakovlev, O. N. Vorontsova, N. A. Lazareva, and N. V. Gulyaeva, “Studies of the effects of intracerebroventricular administration of the caspase-3 inhibitor Z-DEVD-FMK on behavior in rats,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 247–256 (2006).

    CAS  Google Scholar 

  7. H. M. Carman and C. F. Mactutus, “Proximal versus distal cue utilization in spatial navigation: the role of visual activity?” Neurobiol. Learn. Mem., 78, No. 2, 332–346 (2002).

    Article  PubMed  Google Scholar 

  8. T. Celik, G. Deniz, I. T. Uzbay, O. Palaoglu, and I. H. Ayhan, “The effects of flumazenil on two-way active avoidance and locomotor activity in diazepam-treated rats,” Eur. Neuropsychopharmacol., 9, No. 1–2, 45–50 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. P. K. Dash, S. Blum, and A. N. Moore, “Caspase activity plays an essential role in long-term memory,” Neuroreport, 11, No. 12, 2811–2816 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. C. P. Gilman and M. P. Mattson, “Do apoptotic mechanisms regulate synaptic plasticity and growth cone motility?” Neuromol. Med., 2, No. 2, 197–214 (2002).

    Article  CAS  Google Scholar 

  11. N. V. Gulyaeva, “'Apoptotic’ mechanisms in normal brain plasticity: caspase-3 and long-term potentiation,” Zh. Vyssh. Nerv. Deyat., 54, No. 4, 437–447 (2004).

    Google Scholar 

  12. N. V. Gulyaeva, I. E. Kudryashov, and I. V. Kudryashova, “Caspase activity is essential for long-term potentiation,” J. Neurosci. Res., 73, No. 6, 853–864 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. I. E. Kudryashov, N. V. Onufriev, I. V. Kudryashova, and N. V. Gulyaeva, “Periods of postnatal maturation of hippocampus: synaptic modification and neuronal disconnection,” Dev. Brain Res., 132, No. 2, 113–120 (2001).

    Article  CAS  Google Scholar 

  14. I. E. Kudryashov, A. A. Yakovlev, I. V. Kudryashova, and N. V. Gulyaeva, “Footshock stress alters early postnatal development of electrophysiological responses and caspase-3 activity in rat hippocampus,” Neurosci. Lett., 332, No. 2, 95–98 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. M. P. Mattson and W. Duan, “Apoptotic” biochemical cascades in synaptic compartments: Roles in adaptive plasticity and neurodegenerative disorders,” J. Neurosci. Res., 58, No. 1, 152–166 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. R. W. Oppenheim, “Cell death during development of the nervous system,” Ann. Rev. Neurosci., 14, 453–501 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. P. Rakic, J. P. Bourgeois, M. F. Eckenhoff, N. Zecevic, and P. S. Goldman-Rakic, “Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex,” Science, 232, No. 4747, 232–235 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. J. W. Rudy, S. Stadler-Morris, and P. Albert, “Ontogeny of spatial navigation behaviors in the rat: Dissociation of ‘proximal-’ and ‘distal-’ cue-based behaviors,” Behav. Neurosci., 101, No. 1, 62–73 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. A. Savonenko, T. Werka, E. Nikolaev, K. Zielinski, and L. Kaczmarek, “Complex effects of NMDA receptor antagonist APV in the basolateral amygdale on acquisition of two-way avoidance reaction and long-term fear memory,” Learn. Memory, 10, No. 4, 293–303 (2003).

    Article  Google Scholar 

  20. P. Schotte, W. Declerq, S. Van Huffel, P. Vandenabeele, and R. Bayaert, “Non-specific effects of methyl ketone peptide inhibitors of caspases,” FEBS Lett., 442, No. 1, 117–121 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. L. R. Squire, “Memory and the hippocampus — a synthesis from findings with rats, monkeys, and humans,” Psychological. Rev., 99, No. 2, 195–231 (1992).

    Article  CAS  Google Scholar 

  22. M. Y. Stepanichev, I. V. Kudryashova, A. A. Yakovlev, M. V. Onufriev, L. G. Khaspekov, A. A. Lyzhin, N. A. Lazareva, and N. V. Gulyaeva, “Central administration of a caspase inhibitor impairs shuttle-box performance in rats,” Neurosci., 136, No. 2, 579–591 (2005).

    Article  CAS  Google Scholar 

  23. M. Torras-Garcia, D. Costa-Miserachs, I. Morgado-Bernal, and I. Potell-Corres, “Improvement of shuttle-box performance by anterodorsal medial septal lesions in rats,” Behav. Brain Res., 141, No. 2, 147–158 (2003).

    Article  PubMed  Google Scholar 

  24. K. Zielinski and E. Nikolaev, “Changes of intertrial response rate with elapse of time after two-way avoidance trial in rats,” Acta Neurobiol. Exp., 57, No. 1, 41–47 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kudryashova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 57, No. 6, pp. 702–711, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashova, I.V., Stepanichev, M.Y. & Gulyaeva, N.V. Natural activation of caspase-3 is required for the development of operant behavior in postnatal ontogenesis. Neurosci Behav Physi 39, 65–72 (2009). https://doi.org/10.1007/s11055-008-9097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9097-z

Key Words

Navigation