Skip to main content
Log in

Genotype-dependent characteristics of behavior in mice in cognitive tests. The effects of Noopept

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Male C57BL/6J, BALB/c, and DBA/2J mice showed differences in their abilities to perform two cognitive tests. C57BL/6J mice had good learning ability and memory trace retention (at 10 days) in a simplified Morris maze, while BALB/c mice had low levels of memory trace retention and DBA/2J mice had low learning ability in this test. I.p. administration of the nootropic agent Noopept (GVS-111, N-phenylacetyl-L-prolylglycine ethyl ester) at a dose of 0.5 mg/kg 15 min before the start of the test induced significant improvements in long-term memory in this test in BALB/c mice but no further improvement in C57BL/6J mice, and had no effect in DBA/2J mice. On testing the ability to extrapolate the direction of movement of a stimulus, administration of Noopept increased the proportion of correct responses in C57BL/6J and BALB/c mice, but had no effect in DBA/2J mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Bel'nik, R. U. Ostrovskaya, and I. I. Poletaeva, “The behavior of mice of different strains — modification by Noopept,” Zh. Vyssh. Nerv. Deyat., 57, No. 6, (2007).

  2. T. A. Voronina and R. U. Ostrovskaya, Methods for the Study of the Nootropic Activity of Pharmacological Substances. Handbook for Experimental (Preclinical) Studies of Novel Pharmacological Agents [in Russian], R. U. Khabriev (ed.), Moscow (2005), pp. 308–320.

  3. L. V. Krushinskii, A. P. Dyban, I. I. Poletaeva, L. G. Romanova, N. V. Papova, and V. S. Baranov, “Approaches to the physiological-genetic study of the ability of mice to extrapolate,” Zh. Vyssh. Nerv. Deyat., 28, No. 5, 903–912 (1978).

    CAS  Google Scholar 

  4. G. F. Lakin, Biometrics [in Russian], Vysshaya Shkola, Moscow (1990).

    Google Scholar 

  5. I. G. Lil'p, F. Z. Blizikoeva, I. I. Poletaeva, and V. I. Ivanov, “Interstrain differences in learning ability in 101/H and CBA mice in a water maze (modified Morris test),” Byull. Éksperim. Biol. Med., 124, No. 12, 666–668 (1997).

    Google Scholar 

  6. R. U. Ostrovskaya, T. A. Gudasheva, T. A. Voronina, and S. B. Seredinin, “An original nootropic and neuroprotective agent,” Éksperim. Klin. Farmakol., No. 5, 66–72 (2002).

  7. R. U. Ostrovskaya, T. Kh. Mirzoev, F. A. Firova, S. S. Trofimov, T. A. Gudasheva, T. N. Grechenko, E. F. Gutyrchik, and E. B. Barkova, “Behavioral and electrophysiological analysis of the cholinepositive action of the nootropic acyl-proline dipeptide GVS-111,” Éksperim. Klin. Farmakol., 64, No. 2, 11–14 (2001).

    CAS  Google Scholar 

  8. O. V. Perepelkina, N. V. Markina, and I. I. Poletaeva, “Ability to extrapolate movement direction in mice bred for large and small brain weight: effects of being kept in a ‘rich’ environment,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 282–286 (2006).

    Google Scholar 

  9. N. V. Popova and I. I. Poletaeva, “Ability to solve an extrapolation task in mice bred for large and small brain weight,” Zh. Vyssh. Nerv. Deyat., 33, No. 2, 370–372 (1983).

    CAS  Google Scholar 

  10. S. B. Seredenin, Lectures in Pharmacogenetics [in Russian], Medical Information Agency, Moscow (2004).

    Google Scholar 

  11. S. B. Seredenin, B. A. Badyshtov, G. G. Neznamov, A. L. Makhnysheva, I. V. Kolotilinskaya, and S. N. Nadorov, “Prediction of individual reactions to emotional stress and benzodiazepine tranquilizers,” Éksperim. Klin. Farmakol., 64, No. 1, 3–12 (2001).

    Google Scholar 

  12. M. Ammassari-Teule and A. Caprioli, “Spatial learning and memory, maze running strategies and cholinergic mechanisms in two inbred mouse strains,” Behav. Brain Res., 17, No. 1, 9–16 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. M. Arns, M. Sauvage, and T. Steckler, “Excitotoxic hippocampal lesions disrupt allocentric spatial learning in mice: effects of strain and task demands,” Behav. Brain Res., 106, No. 1–2, 151–164 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. N. De Bruin, M. Mahieu, T. Patel, R. Willems, A. Lesage, and A. Megens, “Performance of F2 B6x129 hybrid mice in the Morris water maze, latent inhibition and prepulse inhibition paradigms: Comparison with C57B1/6J and 129/sv inbred mice,” Behav. Brain Res., 172, No. 1, 122–134 (2006).

    Article  PubMed  Google Scholar 

  15. D. E. Fordyce, V. J. Clark, R. Paylor, and J. M. Wehner, “Enhancement of hippocampally-mediated learning and protein kinase C activity by oxiracetam in learning-impaired DBA/2 mice,” Brain Res., 672, No. 1, 170–176 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. T. A. Gudasheva, T. A. Voronina, R. U. Ostrovskaya, G. G. Rozantsev, N. I. Vasilevich, S. S. Trofimov, E. V. Kravchenko, A. P. Skoldinov, and S. B. Seredenin, “Synthesis and antiamnesic activity of a series of N-acylprolyl-containing dipeptides,” Eur. J. Med. Chem., 31, No. 2, 151–157 (1996).

    Article  CAS  Google Scholar 

  17. D. K. Ingram and T. P. Corfman, “An overview of neurobiological comparisons in mouse strains,” Neurosci. Biobehav. Rev., 4, 421–435 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. S. Matsuyama, U. Namgung, and A. Routtenberg, “Long-term potentiation persistence greater in C57BL/6J/6 than DBA/2J mice: predicted on basis of protein kinase C levels and learning performance,” Brain Res., 763, 127–130 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. R. G. M. Morris, “Development of water-maze procedure for studying spatial learning in the rat,” J. Neurosci. Meth., 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  20. L. Nadel, “The role of the hippocampus in declarative memory: a comment on Zola-Morgan, Squire, and Ramus,” Hippocampus, 5, 232–239 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. E. Passino, S. Middei, L. Restivo, V. Bertaina-Anglade, and M. Ammassari-Teule, “Genetic approach to variability of memory systems: analysis of place vs. response learning and fos-related expression in hippocampal and striatal areas of C57BL/6 and DBA/2 mice,” Hippocampus, 12, No. 1, 63–75 (2002).

    Article  PubMed  Google Scholar 

  22. I. I. Poletaeva, N. V. Popova, and L. G. Romanova, “Genetic aspects of animal reasoning,” Behav. Genet., 23, 467–475 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. I. I. Poletaeva, E. I. Sarychev, L. G. Alfeeva, and M. M. Kozlovskaya, “Logic task solution and noothropic drug effect,” in: Signal Molecules and Behavior, W. Winslow, O. Vinogradova, and D. Sakharov (eds.), Manchester University Press, Manchester (1991), pp. 278–285.

    Google Scholar 

  24. S. S. R. Rose, “'smart drugs'-do they work?” Nature Rev. Neurosci., 3, 975–979 (2002).

    Article  CAS  Google Scholar 

  25. H. Schwegler, W. E. Crusio, H.-P. Lipp, and B. Heimrich, “Water-maze learning in the mouse correlates with variation in hippocampal morphology,” Behav. Genet., 18, 153–166 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. L. A. Schimanski and P. V. Nguyen, “Multidisciplinary approaches for investigating the mechanisms of hippocampus-dependent memory: a focus on inbred mouse strains,” Behav. Brain Res., 172, No. 1, 122–134 (2006).

    Article  Google Scholar 

  27. S. B. Seredenin, T. A. Voronina, T. A. Gudasheva, R. U. Ostrovskaya, G. G. Rozantsev, A. P. Skoldinov, S. S. Trofimov, J. A. Halikas, and G. L. Garibova, “N-Acylprolyl-dipeptides having antiamnestic, antihypoxic and anorexigenic effects,” US Patent No. 5,439,930 (1995).

  28. M. Upchurch and J. M. Wehner, “Inheritance of spatial learning ability in inbred mice: a classical genetic analysis,” Behav. Neurosci., 103, No. 6, 1251–1258 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. D. Van Dam, D. Abramowski, M. Staufenbiel, and P. P. De Deyn, “Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23_model,” Psychopharmacology (Berlin), 180, No. 1, 177–190 (2005).

    Article  CAS  Google Scholar 

  30. M. Yoshida, G. Goto, and S. Watanabe, “Task-dependent strain difference of spatial learning in C57BL/6J and BALB/c mice,” Physiol. Behav., 73, No. 1–2, 37–42 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Poletaeva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 57, No. 6, pp. 721–728, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bel’nik, A.P., Ostrovskaya, R.U. & Poletaeva, I.I. Genotype-dependent characteristics of behavior in mice in cognitive tests. The effects of Noopept. Neurosci Behav Physi 39, 81–86 (2009). https://doi.org/10.1007/s11055-008-9095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9095-1

Key Words

Navigation