Neuroscience and Behavioral Physiology

, Volume 39, Issue 1, pp 81–86 | Cite as

Genotype-dependent characteristics of behavior in mice in cognitive tests. The effects of Noopept

  • A. P. Bel’nik
  • R. U. Ostrovskaya
  • I. I. Poletaeva
Article

Male C57BL/6J, BALB/c, and DBA/2J mice showed differences in their abilities to perform two cognitive tests. C57BL/6J mice had good learning ability and memory trace retention (at 10 days) in a simplified Morris maze, while BALB/c mice had low levels of memory trace retention and DBA/2J mice had low learning ability in this test. I.p. administration of the nootropic agent Noopept (GVS-111, N-phenylacetyl-L-prolylglycine ethyl ester) at a dose of 0.5 mg/kg 15 min before the start of the test induced significant improvements in long-term memory in this test in BALB/c mice but no further improvement in C57BL/6J mice, and had no effect in DBA/2J mice. On testing the ability to extrapolate the direction of movement of a stimulus, administration of Noopept increased the proportion of correct responses in C57BL/6J and BALB/c mice, but had no effect in DBA/2J mice.

Key Words

cognitive tests Morris test extrapolation ability behavioral genetics mice inbred strains nootropic effects Noopept 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Bel'nik, R. U. Ostrovskaya, and I. I. Poletaeva, “The behavior of mice of different strains — modification by Noopept,” Zh. Vyssh. Nerv. Deyat., 57, No. 6, (2007).Google Scholar
  2. 2.
    T. A. Voronina and R. U. Ostrovskaya, Methods for the Study of the Nootropic Activity of Pharmacological Substances. Handbook for Experimental (Preclinical) Studies of Novel Pharmacological Agents [in Russian], R. U. Khabriev (ed.), Moscow (2005), pp. 308–320.Google Scholar
  3. 3.
    L. V. Krushinskii, A. P. Dyban, I. I. Poletaeva, L. G. Romanova, N. V. Papova, and V. S. Baranov, “Approaches to the physiological-genetic study of the ability of mice to extrapolate,” Zh. Vyssh. Nerv. Deyat., 28, No. 5, 903–912 (1978).Google Scholar
  4. 4.
    G. F. Lakin, Biometrics [in Russian], Vysshaya Shkola, Moscow (1990).Google Scholar
  5. 5.
    I. G. Lil'p, F. Z. Blizikoeva, I. I. Poletaeva, and V. I. Ivanov, “Interstrain differences in learning ability in 101/H and CBA mice in a water maze (modified Morris test),” Byull. Éksperim. Biol. Med., 124, No. 12, 666–668 (1997).Google Scholar
  6. 6.
    R. U. Ostrovskaya, T. A. Gudasheva, T. A. Voronina, and S. B. Seredinin, “An original nootropic and neuroprotective agent,” Éksperim. Klin. Farmakol., No. 5, 66–72 (2002).Google Scholar
  7. 7.
    R. U. Ostrovskaya, T. Kh. Mirzoev, F. A. Firova, S. S. Trofimov, T. A. Gudasheva, T. N. Grechenko, E. F. Gutyrchik, and E. B. Barkova, “Behavioral and electrophysiological analysis of the cholinepositive action of the nootropic acyl-proline dipeptide GVS-111,” Éksperim. Klin. Farmakol., 64, No. 2, 11–14 (2001).Google Scholar
  8. 8.
    O. V. Perepelkina, N. V. Markina, and I. I. Poletaeva, “Ability to extrapolate movement direction in mice bred for large and small brain weight: effects of being kept in a ‘rich’ environment,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 282–286 (2006).Google Scholar
  9. 9.
    N. V. Popova and I. I. Poletaeva, “Ability to solve an extrapolation task in mice bred for large and small brain weight,” Zh. Vyssh. Nerv. Deyat., 33, No. 2, 370–372 (1983).Google Scholar
  10. 10.
    S. B. Seredenin, Lectures in Pharmacogenetics [in Russian], Medical Information Agency, Moscow (2004).Google Scholar
  11. 11.
    S. B. Seredenin, B. A. Badyshtov, G. G. Neznamov, A. L. Makhnysheva, I. V. Kolotilinskaya, and S. N. Nadorov, “Prediction of individual reactions to emotional stress and benzodiazepine tranquilizers,” Éksperim. Klin. Farmakol., 64, No. 1, 3–12 (2001).Google Scholar
  12. 12.
    M. Ammassari-Teule and A. Caprioli, “Spatial learning and memory, maze running strategies and cholinergic mechanisms in two inbred mouse strains,” Behav. Brain Res., 17, No. 1, 9–16 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Arns, M. Sauvage, and T. Steckler, “Excitotoxic hippocampal lesions disrupt allocentric spatial learning in mice: effects of strain and task demands,” Behav. Brain Res., 106, No. 1–2, 151–164 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    N. De Bruin, M. Mahieu, T. Patel, R. Willems, A. Lesage, and A. Megens, “Performance of F2 B6x129 hybrid mice in the Morris water maze, latent inhibition and prepulse inhibition paradigms: Comparison with C57B1/6J and 129/sv inbred mice,” Behav. Brain Res., 172, No. 1, 122–134 (2006).PubMedCrossRefGoogle Scholar
  15. 15.
    D. E. Fordyce, V. J. Clark, R. Paylor, and J. M. Wehner, “Enhancement of hippocampally-mediated learning and protein kinase C activity by oxiracetam in learning-impaired DBA/2 mice,” Brain Res., 672, No. 1, 170–176 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    T. A. Gudasheva, T. A. Voronina, R. U. Ostrovskaya, G. G. Rozantsev, N. I. Vasilevich, S. S. Trofimov, E. V. Kravchenko, A. P. Skoldinov, and S. B. Seredenin, “Synthesis and antiamnesic activity of a series of N-acylprolyl-containing dipeptides,” Eur. J. Med. Chem., 31, No. 2, 151–157 (1996).CrossRefGoogle Scholar
  17. 17.
    D. K. Ingram and T. P. Corfman, “An overview of neurobiological comparisons in mouse strains,” Neurosci. Biobehav. Rev., 4, 421–435 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Matsuyama, U. Namgung, and A. Routtenberg, “Long-term potentiation persistence greater in C57BL/6J/6 than DBA/2J mice: predicted on basis of protein kinase C levels and learning performance,” Brain Res., 763, 127–130 (1997).PubMedCrossRefGoogle Scholar
  19. 19.
    R. G. M. Morris, “Development of water-maze procedure for studying spatial learning in the rat,” J. Neurosci. Meth., 11, 47–60 (1984).CrossRefGoogle Scholar
  20. 20.
    L. Nadel, “The role of the hippocampus in declarative memory: a comment on Zola-Morgan, Squire, and Ramus,” Hippocampus, 5, 232–239 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    E. Passino, S. Middei, L. Restivo, V. Bertaina-Anglade, and M. Ammassari-Teule, “Genetic approach to variability of memory systems: analysis of place vs. response learning and fos-related expression in hippocampal and striatal areas of C57BL/6 and DBA/2 mice,” Hippocampus, 12, No. 1, 63–75 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    I. I. Poletaeva, N. V. Popova, and L. G. Romanova, “Genetic aspects of animal reasoning,” Behav. Genet., 23, 467–475 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    I. I. Poletaeva, E. I. Sarychev, L. G. Alfeeva, and M. M. Kozlovskaya, “Logic task solution and noothropic drug effect,” in: Signal Molecules and Behavior, W. Winslow, O. Vinogradova, and D. Sakharov (eds.), Manchester University Press, Manchester (1991), pp. 278–285.Google Scholar
  24. 24.
    S. S. R. Rose, “'smart drugs'-do they work?” Nature Rev. Neurosci., 3, 975–979 (2002).CrossRefGoogle Scholar
  25. 25.
    H. Schwegler, W. E. Crusio, H.-P. Lipp, and B. Heimrich, “Water-maze learning in the mouse correlates with variation in hippocampal morphology,” Behav. Genet., 18, 153–166 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    L. A. Schimanski and P. V. Nguyen, “Multidisciplinary approaches for investigating the mechanisms of hippocampus-dependent memory: a focus on inbred mouse strains,” Behav. Brain Res., 172, No. 1, 122–134 (2006).CrossRefGoogle Scholar
  27. 27.
    S. B. Seredenin, T. A. Voronina, T. A. Gudasheva, R. U. Ostrovskaya, G. G. Rozantsev, A. P. Skoldinov, S. S. Trofimov, J. A. Halikas, and G. L. Garibova, “N-Acylprolyl-dipeptides having antiamnestic, antihypoxic and anorexigenic effects,” US Patent No. 5,439,930 (1995).Google Scholar
  28. 28.
    M. Upchurch and J. M. Wehner, “Inheritance of spatial learning ability in inbred mice: a classical genetic analysis,” Behav. Neurosci., 103, No. 6, 1251–1258 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Van Dam, D. Abramowski, M. Staufenbiel, and P. P. De Deyn, “Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23_model,” Psychopharmacology (Berlin), 180, No. 1, 177–190 (2005).CrossRefGoogle Scholar
  30. 30.
    M. Yoshida, G. Goto, and S. Watanabe, “Task-dependent strain difference of spatial learning in C57BL/6J and BALB/c mice,” Physiol. Behav., 73, No. 1–2, 37–42 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. P. Bel’nik
    • 1
  • R. U. Ostrovskaya
    • 1
  • I. I. Poletaeva
    • 2
  1. 1.State V. V. Zakusov Research Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia
  2. 2.Faculty of BiologyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations