Skip to main content
Log in

Some aspects of the modular organization of the primary visual cortex of the cat: Patterns of cytochrome oxidase activity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The distribution of the enzyme cytochrome oxidase (CO) in continuous series of parasagittal sections from field 17 and frontal sections of the dorsal nucleus of the lateral geniculate body (LGB) from normal kittens and adult cats was studied. In all cats apart from neonates, layer IV showed regularly alternating areas with above-background levels of CO activity (“spots”). There was a significant increase in the contrast of the “spots” from days 13 to 21, which was followed by a significant decrease from days 48 to 93. These changes coincided with ontogenetic changes in the level of visual system plasticity. There were no differences in CO activity between layers A and A1 of the dorsal nucleus of the LGB. It is suggested that the non-uniform distribution of the level of functional activity of neurons in field 17 reflects the formation of columnar cortical structures during the critical period of postnatal ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Merkul’eva and F. N. Makarov, “Characteristics of the metabolic activity visual system neurons of kittens reared in conditions of decreased illumination,” Morfologiya,, 126, No. 5, 120–126 (2004).

    Google Scholar 

  2. P. A. Anderson, J. Olivarria, and R. C. van Sluyters, “The overall pattern of ocular dominance bands in cat visual cortex,” J. Neurosci., 8, No. 6, 2183–2200 (1988).

    PubMed  CAS  Google Scholar 

  3. A. Antonini and M. P. Stryker, “Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade,” J. Neurosci., 13, No. 8, 3549–3573 (1993).

    PubMed  CAS  Google Scholar 

  4. C. Blakemore and R. C. van Sluyters, “Innate and environmental factors in the development of the kitten’s visual cortex,” J. Physiol., 248, No. 6, 663–716 (1975).

    PubMed  CAS  Google Scholar 

  5. M. C. Crair, D. C. Gillespie, and M. P. Stryker, “The role of visual experience in the development of columns in cat visual cortex,” Science, 279, No. 5350, 566–570 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. M. C. Crair, J. C. Horton, A. Antonini, and M. P. Stryker, “Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age,” J. Comp. Neurol., 430, No. 3, 235–249 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. R. H. Dyck and M. S. Cynader, “Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: transient regional, laminar, and columnar distributions during postnatal development,” J. Neurosci., 13, No. 10, 4316–4338 (1993).

    PubMed  CAS  Google Scholar 

  8. V. B. Mountcastle, “The columnar organization of the neocortex,” Brain, 120, No. 4, 701–722 (1997).

    Article  PubMed  Google Scholar 

  9. K. M. Murphy, K. R. Duffy, D. G. Jones, and D. E. Mitchell, “Development of cytochrome oxidase blobs in visual cortex of normal and visually deprived cats,” Cereb. Cortex, 11, No. 1, 122–135 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. K. M. Murphy, D. G. Jones, and R. C. Van Sluyters, “Cytochrome-oxidase blobs in cat primary visual cortex,” J. Neurosci., 15, No. 6, 4196–4208 (1995).

    PubMed  CAS  Google Scholar 

  11. D. J. Price, “Patterns of cytochrome oxidase activity in areas 17, 18 and 19 of the visual cortex of cats and kittens,” Exptl. Brain Res., 58, No. 1, 125–133 (1985).

    CAS  Google Scholar 

  12. E. Reinoso-Suarez, Topographischer Hirnatlas der Katze, Herausgegeben von E. Merck A. G., Darmstadt (1961).

    Google Scholar 

  13. C. J. Shatz, S. Lindstrom, and T. N. Wiesel, “The distribution of afferents representing the right and left eyes in the cat’s visual system,” Brain Res., 131, No. 2, 103–116 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. S. W. Schoen, B. Leutenecker, G. W. Kreutzberg, et al., “Ocular dominance plasticity and developmental changes of 5′-nucleotidase distributions in the kitten visual cortex,” J. Comp. Neurol., 296, No. 2, 379–392 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. C. Trepel, K. R. Duffy, V. D. Pegado, and K. M. Murphy, “Patchy distribution of NMDAR1 subunit immunoreactivity in developing visual cortex,” J. Neurosci., 18, No. 9, 3404–3415 (1998).

    PubMed  CAS  Google Scholar 

  16. T. N. Wiesel and D. H. Hubel, “Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body,” J. Neurophysiol., 26, No. 6, 978–993 (1963).

    PubMed  CAS  Google Scholar 

  17. M. T. Wong-Riley, “Cytochrome oxidase: an endogenous metabolic marker for neuronal activity,” Trends Neurosci., 12, No. 3, 94–101 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Morfologiya, Vol. 132, No. 5, pp. 28–33, September–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkul’eva, N.S., Makarov, F.N. Some aspects of the modular organization of the primary visual cortex of the cat: Patterns of cytochrome oxidase activity. Neurosci Behav Physi 38, 849–853 (2008). https://doi.org/10.1007/s11055-008-9060-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9060-z

Key words

Navigation