Skip to main content
Log in

Neuronal connections of eye-dominance columns in the cat cerebral cortex after monocular deprivation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Plastic changes in intrahemisphere neuronal connections of the eye-dominance columns of cortical fields 17 and 18 were studied in monocularly deprived cats. The methodology consisted of microintophoretic administration of horseradish peroxidase into cortical columns and three-dimensional reconstruction of the areas of retrograde labeled cells. The eye dominance of columns was established, as were their coordinates in the projection of the visual field. In field 17, the horizontal connections of columns receiving inputs from the non-deprived eye via the crossed-over visual tracts were longer than the connections of the “non-crossed” columns of this eye and were longer than in normal conditions; the connections of the columns of the deprived eye were significantly reduced. Changes in the spatial organization of horizontal connections in field 17 were seen for the columns of the non-deprived eye (areas of labeled cells were rounder and the density of labeled cells in these areas were non-uniform). The longest horizontal connections in deprived cats were no longer than the lengths of these connections in cats with strabismus. It is suggested that the axon length of cells giving rise to the horizontal connections of cortical columns has a limit which is independent of visual stimulation during the critical period of development of the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Detection of horizontal afferent connections of one orientational column in the visual cortex in cats,” Morfologiya, 110, No. 4, 116–118 (1996).

    CAS  Google Scholar 

  2. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Microtopography of cortical fields 17 and 18 in cats,” Sensor. Sistemy, 13, No. 4, 277–282 (1999).

    Google Scholar 

  3. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Structure of reciprocal connections of visual cortex fields 17 and 18 in cats,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 3, 324–328 (2002).

    CAS  Google Scholar 

  4. S. V. Alekseenko, S. N. Toporova, F. N. Makarov, and V. A. Lyakhovetskii, “Structure of internal interneuronal connections in field 17 of the cat cortex,” Morfologiya, 123, No. 2, 20–23 (2003).

    CAS  Google Scholar 

  5. P. Yu. Shkorbatova, S. N. Toporova, F. N. Makarov, and S. V. Alekseenko, “Intracortical connections of eye-dominance columns in fields 17 and 18 in experimental strabismus in cats,” Sensor. Sistemy, 20, No. 4, 309–318 (2006).

    Google Scholar 

  6. C. J. Beaver, Q. Ji, and N. W. Daw, “Layer differences in the effect of monocular vision in light-and dark-reared kittens,” Vis. Neurosci., 18, No. 5, 811–820 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. G. G. Blasdel, “Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex,” J. Neurosci., 12, 3115–3138 (1992).

    PubMed  CAS  Google Scholar 

  8. T. Bonhoeffer and A. Grinvald, “Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns,” Nature, 353, No. 6343, 429–421 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. E. M. Calloway and L. C. Katz, “Emergence and refinement of clustered horizontal connections in cat striate cortex,” J. Neurosci., 10, No. 4, 1134–1153 (1990).

    Google Scholar 

  10. M. C. Crair, D. C. Gillespie, and M. P. Stryker, “The role of visual experience in the development of columns in cat visual cortex,” Science, 279, No. 5350, 5660–5670 (1998).

    Article  Google Scholar 

  11. M. C. Crair, J. C. Horton, A. Antonini, and M. P. Stryker, “Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age,” J. Comp. Neurol., 430, No. 2, 235–249 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. M. C. Crair, E. S. Ruthazer, D. C. Gillespie, and M. P. Stryker, “Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex,” J. Neurophysiol., 77, 3381–3385 (1997).

    PubMed  CAS  Google Scholar 

  13. N. W. Daw, Visual Development, Springer (2006).

  14. B. Fischer and J. Kruger, “Disparity tuning and binocularity of single neurons in cat visual cortex,” Exptl. Brain Res., 35, No. 1, 1–8 (1979).

    Article  CAS  Google Scholar 

  15. R. A. Fisken, L. J. Garey, and T. P. S. Powell, “The intrinsic, association and commissural connections of area 17 of the visual cortex,” Phil. Trans. Roy. Soc. Lond. (Biol.), 272, 487–536 (1975).

    Article  CAS  Google Scholar 

  16. R. A. Galuske and W. Singer, “The origin and topography of long-range intrinsic projections in cat visual cortex: a developmental study,” Cereb. Cortex, 6, No. 3, 417–430 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. R. W. Guillery and D. J. Stelzner, “The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat,” J. Comp. Neurol., 139, 413–422 (1970).

    Article  PubMed  CAS  Google Scholar 

  18. J. C. Horton and D. R. Hocking, “An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience,” J. Neurosci., 16, No. 5, 1791–1807 (1996).

    PubMed  CAS  Google Scholar 

  19. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London), 160, 106–154 (1962).

    CAS  Google Scholar 

  20. D. H. Hubel and T. N. Wiesel, Brain and Visual Perception, Oxford University Press, New York, Oxford (2005).

    Google Scholar 

  21. M. Hubener, D. Shoham, A. Grinvald, and T. Bonhoeffer, “Spatial relationships among three columnar systems in cat area 17,” J. Neurosci., 17, No. 23, 9270–9292 (1997).

    PubMed  CAS  Google Scholar 

  22. P. O. Kanold and C. J. Shatz, “Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity,” Neuron, 51, No. 5, 627–638 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. T. Kasamatsu, M. Kitano, E. E. Sutter, and A. M. Norcia, “Lack of lateral inhibitory interactions in visual cortex of monocularly deprived cats,” Vis. Res., 38, No. 1, 1–12 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. P. Kozma and L. Kiorpes, “Contour integration in amblyopic monkeys,” Vis. Neurosci., 20, No. 5, 577–588 (2003).

    Article  PubMed  Google Scholar 

  25. C. Lee, J. G. Malpeli, H. D. Schwark, and T. G. Weyrand, “Cat medial interlaminar nucleus: retinotopy, relation to tapetum, and implications for scotopic vision,” J. Neurophysiol., 52, No. 5, 848–869 (1984).

    PubMed  CAS  Google Scholar 

  26. S. LeVay, M. P. Stryker, and C. Schatz, “Ocular dominance columns and development in layer IV of the cat’s visual cortex: a quantitative study,” J. Comp. Neurol., 179, 22–244 (1978).

    Article  Google Scholar 

  27. H. J. Luhmann, J. M. Greuel, and W. Singer, “Horizontal interactions in cat striate cortex: III. Ectopic receptive fields and transient exuberance of tangential interactions,” Eur. J. Neurosci., 2, No. 4, 369–377 (1990a).

    Article  PubMed  Google Scholar 

  28. H. J. Luhmann, W. Singer, and L. Martinez-Millan, “Horizontal interactions in cat striate cortex: I. Anatomical substrate and postnatal development,” Eur. J. Neurosci., 2, No. 4, 233–357 (1990b).

    Google Scholar 

  29. Y. Matsuda, K. Ohki, T. Saito, A. Ajima, and S. D. Kim, “Coincidence of ipsilateral ocular dominance peaks with orientation pinwheel centers in cat visual cortex,” Neuroreport, 11, No. 15, 3337–3343 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. L. Mioche and W. Singer, “Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties,” J. Neurophysiol., 62, No. 1, 185–197 (1989).

    PubMed  CAS  Google Scholar 

  31. G. D. Mower, “The relationship between relative eye usage and ocular dominance shifts in cat visual cortex,” Brain Res. Dev., 154, No. 1, 147–151 (2005).

    Article  CAS  Google Scholar 

  32. C. R. Olson and R. D. Freeman, “Progressive changes in kitten striate cortex during monocular vision,” J. Neurophysiol., 38, No. 1, 26–32 (1975).

    PubMed  CAS  Google Scholar 

  33. S. Rathjen and S. Lowel, “Early postnatal development of functional ocular dominance columns in cat primary visual cortex,” Neuroreport, 11, No. 11, 2363–2378 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. S. Rathjen, K. E. Schmidt, and S. Lowel, “Two-dimensional analysis of the spacing of ocular dominance columns in normally raised and strabismic kittens,” Exptl. Brain Res., 145, 158–165 (2002).

    Article  Google Scholar 

  35. P. A. Salin, P. Girard, H. Kennedy, and J. Bullier, “Visuotopic organization of corticocortical connections in the visual system of the cat,” J. Comp. Neurol., 320, 415–434 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. K. J. Sanderson, “The projection of the visual field to the lateral geniculate and medial lateral nuclei in the cat,” J. Comp. Neurol., 143, No. 1, 101–117 (1971).

    Article  PubMed  CAS  Google Scholar 

  37. K. E. Schmidt, V. Stephan, W. Singer, and S. Lowel, “Spatial analysis of ocular dominance patterns in monocularly deprived cats,” Cereb. Cortex, 12, 783–796 (2002).

    Article  PubMed  Google Scholar 

  38. C. J. Schatz and M. P. Stryker, “Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation,” J. Physiol., 281, 267–283 (1978).

    Google Scholar 

  39. M. A. Silver and A. P. Stryker, “Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat,” J. Neurosci., 19, No. 24, 10829–10842 (1999).

    PubMed  CAS  Google Scholar 

  40. A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, “Deficits to global motion processing in human amblyopia,” Vis. Res., 43, No. 6, 729–738 (2003).

    Article  PubMed  Google Scholar 

  41. J. T. Trachtenberg, C. Trepel, and M. P. Stryker, “Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex,” Science, 287, No. 5460, 2029–2032 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. R. J. Tusa, L. A. Palmer, and A. C. Rosenquist, “Multiple cortical visual areas: Visual field topography in the cat,” in: Cortical Sensory Organization, C. N. Woolsey (ed.), Humana Press, New York (1981), Vol. 2, pp. 1–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 93, No. 9, pp. 1024–1034, September, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseenko, S.V., Toporova, S.N. & Shkorbatova, P.Y. Neuronal connections of eye-dominance columns in the cat cerebral cortex after monocular deprivation. Neurosci Behav Physi 38, 669–675 (2008). https://doi.org/10.1007/s11055-008-9031-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9031-4

Key Words

Navigation