Skip to main content
Log in

Characteristics of visual seeking and evoked potentials in the extrastriate areas of the cortex in humans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies in 11 young, healthy subjects addressed the characteristics of visual seeking (time taken, errors) on changes in the parameters of the target element to be sought (shape, color, and location) in an environment containing heterogeneous white distractors. Evoked potentials (EP) were recorded in six cortical leads (P3, P4, T3, T4, T5, T6) and the late endogenous components of EP were studied, i.e., the N2 and P3 components (standard terminology), as these components are known to change when the type of search changes, in the zone of so-called late selection. When the search difficulty increased (increased similarity between target and distractors), an increase in seeking time was accompanied by a delay in the P3 component and a decrease in its amplitude. Location of the target in a defined position resulted in a decrease in search time and a reduction in the latent period of the P3 component as compared with the situation in which the target position was indeterminate. Changes in the color of the target stimulus led to elimination of the inhibitory action of the distractors: EP parameters were no different from those recorded on presentation of single stimuli. A high level of correlation was found between search parameters and measures of the P3 component. Changes in EP in different types of search were essentially identical (no statistical differences) in the parietal and temporal leads. This suggests that on seeking the target in the environment, the parietal and temporal areas of the cortex function as a single system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Baranov-Krylov and V. T. Shuvaev, “Neurophysiological indicators of voluntary and involuntary visual attention,” Fiziol. Cheloveka, 26, No. 6, 31–40 (2000).

    PubMed  CAS  Google Scholar 

  2. I. N. Baranov-Krylov, V. T. Shuvaev, and D. N. Berlov, “Activation of extrastriate areas of the cortex in humans during selection of visual stimuli by shape and position: analysis of evoked potentials,” Fiziol. Cheloveka, 29, No. 4, 31–39 (2003).

    Google Scholar 

  3. I. N. Baranov-Krylov, V. T. Shuvaev, and I. E. Kanunikov, “Characteristics of activation in the parietal areas of the human cortex in different types of visual attention,” Ros. Fiziol. Zh. im. I. M. Sechenova, 92, No. 2, 176–190 (2006).

    Google Scholar 

  4. D. E. Broadbent, “Stimulus set and response set: two kinds of selective attention,” in: Attention: Contemporary Theory and Analysis, D. I. Mostofsky (ed.), Appleton-Century-Crofts, New York (1970), pp. 51–60.

    Google Scholar 

  5. M. Cheal and D. R. Lyon, “Attention in visual search: multiple search classes,” Percept. Psychophys., 52, No. 2, 113–138 (1992).

    PubMed  CAS  Google Scholar 

  6. J. T. Coull and C. D. Frith, “Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention,” Neuroimage, 8, No. 2, 176–187 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. R. Desimone and L. Ungerleider, “Neural mechanisms of visual processing in monkeys,” in: Handbook of Neuropsychology, F. Boller and J. Grafman (eds.), Elsevier, Amsterdam (1989), Vol. 2, pp. 267–299.

    Google Scholar 

  8. J. E. Desmedt and J. Debecker, “Wave-form and neural mechanism of the decision P350,” EEG Clin. Neurophysiol., 47, No. 6, 648–670 (1970).

    Article  Google Scholar 

  9. E. Donchin and J. B. Israel, “Event-related potentials and psychological theory,” Progr. Brain Res., 54, 697–715 (1980).

    Article  CAS  Google Scholar 

  10. J. Duncan and G. W. Humphreys, “Visual search and similarity,” Psychol. Rev., 96, No. 3, 433–458 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. H. E. Egeth and S. Yantis, “Visual attention: control, representation and time course,” Ann. Rev. Psychol., 48, 269–297 (1997).

    Article  CAS  Google Scholar 

  12. D. R. Gitelman, A. C. Nobre, T. B. Parrish, K. S. LaBar, Y. H. Kim, J. R. Meyer, and M. Mesulam, “A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls,” Brain, 122, No. 6, 1093–1106 (1999).

    Article  PubMed  Google Scholar 

  13. E. Jodo and Y. Kayama, “Relation of negative ERP component to response inhibition in a go/no-go task,” EEG Clin. Neurophysiol., 82, No. 6, 477–482 (1992).

    Article  CAS  Google Scholar 

  14. B. Julesz, “Toward an axiomatic theory of preattentive vision,” Bat Sheva Seminar on Selective Attention in Sensory Processing, Jerusalem, 120–149, No. 7, 41–45 (1987).

    Google Scholar 

  15. G. Keren, “Some considerations of two alleged kinds of selective attention,” J. Exptl. Psychol. Gen., 105, 349–374 (1976).

    Article  CAS  Google Scholar 

  16. M. Kutas, G. McCarthy, and E. Donchin, “Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time,” Science, 197, No. 4305, 792–795 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. G. R. Mangun, “Neural mechanisms of visual selective attention,” Psychophysiology, 32, 4–18 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. A. Martinez, F. Di Russo, L. Anlo-Vento, and S. A. Hillyard, “Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies,” Clin. Neurophysiol., 112, No. 11, 1980–1998 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. M. Mishkin, L. Ungerlieder, and K. Macko, “Object vision and spatial vision: two cortical pathways,” Trends. Neurosci., 6, 414–417 (1983).

    Article  Google Scholar 

  20. A. C. Nobre, G. N. Sebestyen, D. R. Gitelman, M. M. Mesulam, R. S. Frackowiak, and C. D. Frith, “Functional localization of the system for visuospatial attention using positron emission tomography,” Brain, 120, No. 3, 515–533 (1997).

    Article  PubMed  Google Scholar 

  21. I. R. Olson, M. M. Chun, and T. Alisson, “Contextual guidance of attention. Human intracranial event-related potential evidence for feed-back modulation in anatomically early, temporally late stages of visual processing,” Brain, 124, 1417–1425 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. H. Pashler, J. C. Johnston, and E. Ruthruff, “Attention and performance,” Ann. Rev. Psychol., 52, 629–651 (2001).

    Article  CAS  Google Scholar 

  23. T. Picton, “P300: Review and reconciliation,” Psychophysiology, 32, Supplement 1, 7 (1995).

    Google Scholar 

  24. T. W. Picton and D. T. Stuss, “The component structure of the human event-related potentials,” Progr. Brain Res., 54, 18–49 (1980).

    Google Scholar 

  25. T. W. Picton, S. Bentin, E. Donchin, S. A. Hillyard, R. Johnson, G. A. Miller, W. Ritter, D. S. Ruchkin, M. D. Rugg, and M. J. Taylor, “Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria,” Psychophysiology, 37, 127–152 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. M. I. Posner and Y. Cohen, “Components of visual orienting,” Bat Sheva Seminar on Selective Attention, Jerusalem, 531–555 (1987).

  27. W. S. Pritchard, “Psychophysiology of P300,” Psychol. Bull., 89, 506–540 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. W. Ritter, J. M. Ford, A. W. Gaillard, R. Harter, M. Kutas, R. Näätänen, J. Polish, B. Revault, and J. Rohrbaugh, “Cognition and event-related potentials. The relation of negative potentials and cognitive processes,” Ann. N.Y. Acad. Sci., 425, 24–38 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. A. B. Sereno and J. H. Maunsell, “Shape selectivity in primate lateral intraparietal cortex,” Nature, 395, No. 6701, 500–503 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. S. Sutton and D. S. Ruchkin, “The late positive complex. Advances and new problems,” Ann. N.Y. Acad. Sci., 425, 1–23 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. A. Treisman and G. Gelade, “A feature integration theory of attention,” Cogn. Psychol., 12, 97–136 (1980).

    Article  CAS  Google Scholar 

  32. C. Umilta, “Orienting of attention,” in: Handbook of Neuropsychology, F. Boller and J. Grafman (eds.), Elsevier, Vol. 1, pp. 175–193 (1988).

  33. T. R. Vidyasagar, “A neuronal model of attentional spotlight: parietal guiding the temporal,” Brain Res. Rev., 30, No. 1, 66–76 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 93, No. 9, pp. 1001–1011, September, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov-Krylov, I.N., Astashchenko, A.P. Characteristics of visual seeking and evoked potentials in the extrastriate areas of the cortex in humans. Neurosci Behav Physi 38, 661–668 (2008). https://doi.org/10.1007/s11055-008-9030-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9030-5

Key Words

Navigation