Skip to main content
Log in

Effects of the GABA receptor agonist phenibut on behavior and respiration in rabbits in emotionally negative situations

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Three groups of rabbits differing in terms of movement activity in an open field (active, passive, and intermediate animals) were used to study the effects of systemic administration of the GABA receptor agonist phenibut (40 mg/kg, s.c.) on behavior in the open field, behavioral reactivity, and changes in measures of respiration during exposure to emotionally negative stimuli. Phenibut administration led to decreases in horizontal movement activity and some elements of investigative behavior in rabbits in the open field, along with decreases in the reactivity of the animals to emotionally significant stimuli. There were reductions in the probabilities of both active (orientational-investigative, active defensive) and passive defensive (freezing) reactions. The effects of phenibut depended on the typological characteristics of the rabbits: its actions on behavior were most marked in active rabbits and were less marked in passive animals; phenibut had virtually no effect on the behavior of intermediate rabbits. The duration of inhalation by the rabbits on exposure to emotionally significant stimuli increased after phenibut, which contrasted with a reduction seen in normal animals; this is evidence for changes in the autonomic reactivity of the animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Belozertseva and B. V. Andreev, “Pharmaco-ethological studies of the GABAergic mechanisms of regulation of depression-like behavior in mice,” Zh. Vyssh. Nerv. Deyat., 47, No. 4, 1024–1031 (1997).

    CAS  Google Scholar 

  2. A. V. Val’dman, M. M. Kozlovskaya, and O. O. Medvedev, Pharmacological Regulation of Emotional Stress [in Russian], Meditsina, Moscow (1979).

    Google Scholar 

  3. J. Grey, “Neuropsychology of emotions and personality structure,” Zh. Vyssh. Nerv. Deyat., 37, No. 6, 1011–1024 (1987).

    Google Scholar 

  4. E. A. Zyablitseva, “Effects of the GABA derivative phenibut on the acquisition of a defensive conditioned reflex and internal inhibition,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 236–241 (2006).

    CAS  Google Scholar 

  5. I. P. Lapin, Personality and Therapeutic Drugs. An Introduction to the Psychology of Pharmacotherapy [in Russian], Dean, St. Petersburg (2001).

    Google Scholar 

  6. M. D. Mashkovskii, Therapeutic Agents [in Russian], Novaya Volna, Moscow (2000), Vol. 1.

    Google Scholar 

  7. I. V. Pavlova, I. P. Levshina, G. L. Vanetsian, N. N. Shuikin, and E. A. Zyablitseva, “Behavior and respiratory characteristics in rabbits with different levels of movement activity in the open field,” Ros. Fiziol. Zh., 91, No. 9, 1021–1032 (2005).

    CAS  Google Scholar 

  8. I. V. Pavlova, I. P. Levshina, G. L. Vanetsian, Yu. V. Pavlov, N. N. Shuikin, and E. A. Zyablitseva, “Effects of emotionally significant stimuli on behavior and respiration in rabbits with different levels of movement activity in an open field,” Zh. Vyssh. Nerv. Deyat., 56, No. 1, 64–73 (2006).

    Google Scholar 

  9. A. N. Talalaenko, T. K. Krivobok, Yu. V. Babii, V. A. Bogdanov, and N. S. Perch, “Neurochemical mechanisms of the central nucleus of the amygdaloid complex and the anxiolytic actions of tranquillizers in different models of anxious states,” Zh. Vyssh. Nerv. Deyat., 44, No. 6, 1116–1123 (1994).

    CAS  Google Scholar 

  10. I. A. Tarakanov and V. A. Safonov, “Effects of phenibut on the formation of the respiratory rhythm,” Byull. Éksperim. Biol. Med., 119, No. 6, 606–609 (1995).

    CAS  Google Scholar 

  11. I. A. Tarakanov and V. A. Safonov, “The GABAergic system and its role in the regulation of respiration,” Fiziol. Cheloveka, 24, No. 5, 116–128 (1998).

    PubMed  CAS  Google Scholar 

  12. R. A. Khaunina, “The tranquillizing effects of β-phenyl-γ-aminobutyric acid (Fenigam),” Byull. Éksperim. Biol. Med., 57, No. 1, 54–58 (1964).

    CAS  Google Scholar 

  13. R. A. Khaunina and I. P. Lapin, “Use of phenibut in psychiatry and neurology and its place among other psychotropic substances,” Zh. Nevrol. Psikhiatr., 89, No. 4, 142–151 (1989).

    CAS  Google Scholar 

  14. G. I. Shul’gina, A. P. Petrishcheva, and G. G. Kuznetsova, “Effects of the GABA derivative phenibut on behavior and visual cortex neuron activity in rabbits during acquisition of a defensive reflex and internal inhibition,” Zh. Vyssh. Nerv. Deyat., 35, No. 4, 695–702 (1985).

    CAS  Google Scholar 

  15. J. T. Atack, K. A. Wafford, S. J. Tye, S. M. Cook, B. Sohal, A. Pike, C. Sur, D. Melill, L. Bristow, F. Bromidge, I. Ragan, J. Kerby, L. Street, R. Carling, J. L. Castro, P. Whiting, G. R. Dawson, and R. M. McKernan, “TPA023 [7-(1.1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluoropheny 1)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for alpha2-and alpha3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates,” J. Pharmacol. Exptl. Ther., 316, No. 1, 410–422 (2006).

    Article  CAS  Google Scholar 

  16. H. Carm A. Nadlewska, R. Oksztel, and K. Wiszniewski, “AI-DA influences behavior in rats pretreated with baclofen,” Pol. J. Pharmacol., 53, No. 3, 245–252 (2001).

    Google Scholar 

  17. J. N. Crawley, “Exploratory behavior models of anxiety in mice,” Neurosci. Biobehav. Rev., 9, No. 1, 37–44 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. A. Degroot, S. Kashluba, and D. Treit, “Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests,” Pharmacol. Biochem. Behav., 69, No. 3–4, 391–399 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. R. K. McNamara and R. W. Skelton, “Baclofen, a selective GABAB receptor agonist, dose-dependently impairs spatial learning in rats,” Pharmacol. Biochem. Behav., 53, No. 2, 303–308 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. J. Mos, B. Olivier, and A. M. van der Poel, “Modulatory actions of benzodiazepine receptor ligands on agonistic behaviour,” Physiol. Behav., 41, No. 3, 265–278 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. M. Nazar, M. Siemiatkowski, A. Czlonkowska, H. Sienkiewicz-Jarosz, and A. Plasnik, “The role of the hippocampus and 5-HT/GABA interaction in the central effects of benzodiazepine receptor ligands,” J. Neural Transm., 106, No. 5–6, 369–381 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. M. Van Nobelen and L. Kokkinidis, “GABA, not glutamate neurotransmission or mRNA transcription controls footshock-associated fear arousal in the acoustic startle paradigm,” Neurosci., 137, No. 2, 707–716 (2006).

    Article  Google Scholar 

  23. R. Oksztel, H. Car, and K. Wisniewski, “Muscimol changes hypoxia-induced impairment of behavior in rats,” Pol. J. Pharmacol., 54, No. 5, 423–431 (2002).

    PubMed  CAS  Google Scholar 

  24. P. G. Osborne, “A GABAergic mechanism in the medial septum influences cortical arousal and locomotor activity but not a previously learned spatial discrimination task,” Neurosci. Lett., 173, No. 1–2, 63–66 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. L. Rago, R. A. Kiivet, J. Harro, and M. Pold, “Behavioral differences in an elevated plus-maze: correlation between anxiety and decreased number of GABA and benzodiazepine receptors in mouse cerebral cortex,” Naunyn. Schmiederbergs. Arch. Pharmacol., 337, No. 6, 675–678 (1988).

    CAS  Google Scholar 

  26. V. B. Risbrough, J. D. Brodkin, and M. A. Geyer, “GABAA and 5-HT1A receptor agonists block expression of fear-potentiated startle in mice,” Neuropsychopharmacology, 28, No. 4, 654–663 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. M. B. Ruarte and E. O. Alvarez, “Behavioral profiles displayed by rats in an elevated asymmetric plus-maze: effects of diazepam,” Braz. J. Med. Biol. Res., 32, No. 1, 99–106 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. A. S. Russo, F. S. Guimaraes, J. C. de Aguiar, and F. G. Graeff, “Role of benzodiazepine receptors located in the dorsal periaque-ductal grey of rats in anxiety,” Psycopharmacology, 110, No. 1–2, 198–202 (1993).

    Article  CAS  Google Scholar 

  29. M. L. Scottoni, G. Calamandrei, and L. Ricceri, “Neonatal cholinergic lesions and development of exploration upon administration of the GABAA receptor agonist muscimol in preweaning rats,” Pharmacol. Biochem. Behav., 76, No. 2, 213–221 (2003).

    Article  Google Scholar 

  30. A. A. Shah, T. Sjovold, and D. Treit, “Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats,” Brain Res., 1028, No. 1, 112–115 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Pavlova.

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 57, No. 4, pp. 479–488, July–August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zyablitseva, E.A., Pavlova, I.V. Effects of the GABA receptor agonist phenibut on behavior and respiration in rabbits in emotionally negative situations. Neurosci Behav Physi 38, 555–562 (2008). https://doi.org/10.1007/s11055-008-9025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9025-2

Key words

Navigation