Skip to main content

Individual measures of electroencephalogram alpha activity and non-verbal creativity


The aim of the present work was to study correlational interactions between individual measures of alpha-activity in the baseline electroencephalogram (maximum peak frequency, range width, depth of alpha activity desynchronization reactions, structural characteristics of alpha spindles) and measures of non-verbal intellect (“Fluency,” “Originality,” “Flexibility”) in the Torrance test in 98 healthy male subjects. These studies provided the first demonstration that individuals with high alpha-rhythm maximum peak frequency values and prolonged alpha spindles were generally characterized by more “fluent” non-verbal intellect. In turn, high levels of originality and intellectual plasticity showed a significant association with a wider range of alpha activity and variability of alpha spindle amplitude. The highest levels of originality in solving non-verbal tasks were seen in subjects with the lowest values for individual alpha-activity peak frequencies. These measures of the alpha rhythm can be regarded as individual markers of the productivity, plasticity, and originality of non-verbal intellect.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. M. Bazanova and M. B. Shtark, “Neurobiocontrol in the optimization of the function of musicians,” Byull. Éksperim. Biol. Med. Sib. Otd. Rus. Akad. Med. Nauk., 113, No. 3, 114–123 (2004).

    Google Scholar 

  2. 2.

    O. M. Bazanova, “Electroencephalographic correlates of musical ability,” Funkts. Diagn., 1, 62–70 (2005).

    Google Scholar 

  3. 3.

    O. M. Bazanova and L. I. Aftanas, “Use of individual EEG characteristics for increasing the efficacy of neurobiocontrol,” Zh. Nevropatol. Psikhiatr. imeni S. S. Korsakova, 106, No. 2, 31–36 (2006).

    CAS  Google Scholar 

  4. 4.

    N. P. Bekhtereva and V. V. Zontov, “On the question of the electrophysiological characteristics of neural processes,” Fiziol. Zh. SSSR, 47, No. 12, 1463–1472 (1961).

    PubMed  CAS  Google Scholar 

  5. 5.

    V. L. Golubev, E. A. Korabel’nikova, and E. P. Kudryavtseva, “Brain bioelectrical activity in patients with neurotic disorders,” Zh. Nevropatol. Psikhiatr. imeni S. S. Korsakova, 3, No. 4, 38–45 (2006).

    Google Scholar 

  6. 6.

    A. Ya. Kaplan, S. V. Borisov, S. L. Shishkin, and V. A. Ermolaev, “Analysis of the segmental structure of human EEG alpha activity,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 4, 432–442 (2002).

    Google Scholar 

  7. 7.

    A. Ya. Kaplan and S. V. Borisov, “Dynamics of the segmental characteristics of human EEG alpha activity at rest and during cognitive tasks,” Zh. Vyssh. Nerv. Deyat., 53, No. 1, 22–23 (2003).

    Google Scholar 

  8. 8.

    I. V. Mal’tseva and Yu. P. Masloboev, “Alpha rhythm parameters and memorization accuracy,” Fiziol. Cheloveka, 22, No. 3, 11–17 (1996).

    PubMed  CAS  Google Scholar 

  9. 9.

    O. M. Razumnikova, “Spatial frequency organization of brain electrical activity during verbal creativity: effects of the gender factor,” Zh. Vyssh. Nerv. Deyat., 55, No. 4, 487–495 (2005).

    CAS  Google Scholar 

  10. 10.

    V. M. Rusalov and E. R. Naumova, “On the link between general abilities and ‘intellectual’ temperament scales,” Psikhol. Zh., 20, No. 1, 77–79 (1999).

    Google Scholar 

  11. 11.

    K. V. Sudakov, “Functional systems theory and prophylactic medicine,” Vestn. Rus. Akad. Med. Nauk., 5, 7–14 (2001).

    Google Scholar 

  12. 12.

    E. E. Tunik, The Torrance Test. The Diagnostics of Creativity [in Russian], Imaton, St. Petersburg (1998).

    Google Scholar 

  13. 13.

    D. M. Alexander, M. W. Arns, R. H. Paul, D. L. Rowe, N. Cooper, A. H. Esser, K. Fallahpour, B. C. Stephan, E. Heesen, R. Breteler, L. M. Williams, and E. Gordon, “EEG markers for cognitive decline in elderly subjects with subjective memory complaints,” J. Integr. Neurosci., 5, No. 1, 49–74 (2006).

    PubMed  Article  Google Scholar 

  14. 14.

    E. Angelakis, J. F. Lubar, and S. Stathopoulouc, “Electroencephalographic peak alpha frequency correlates of cognitive traits,” Neurosci. Lett., 371, No. 16, 60–63 (2004).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    O. M. Bazanova, “Is music anxiolytic or stressful factor during the menstrual cycle for women — professional musicians?” in: Proceedings of the 7th Multidisciplinary Conference on Stress and Behavior [in Russian], Moscow, Russia, 26–28 February 2003.

  16. 16.

    O. M. Bazanova and L. I. Aftanas, “Relationships between learn-ability and individual indices of EEG alpha activity,” Ann. Gen. Psych., 4, No. 1, S182–S183 (2005).

    Google Scholar 

  17. 17.

    E. Basar and M. Schurmann, “Alpha rhythms in the brain: functional correlates,” News Physiol. Sci., 11, 90–96 (1996).

    Google Scholar 

  18. 18.

    H. Berger, “Ueber das Elektroenkephalogramm des Menschen,” Archiv fur Psychiatric und Nervenkrankheiten, 87, 527–550 (1929).

    Article  Google Scholar 

  19. 19.

    R. C. Clark, D. Veltmeyer, R. J. Hamilton, E. Simms, R. Paul, D. Hermens, and E. Gordon, “Spontaneous alpha peak frequency predicts working memory performance across the age span,” Int. J. Psychophysiol., 53, 1–9 (2004).

    Article  Google Scholar 

  20. 20.

    O.-D. Creutzfeld, G. Bodenstein, and J. S. Barlow, “Computerized EEG pattern classification by adaptive segmentation and probability density function classification. Clinical evaluation,” EEG Clin. Neurophysiol., 60, No. 5, 373–393 (1985).

    Article  Google Scholar 

  21. 21.

    R. J. Davidson, “Cerebral asymmetry, emotion, and affective style,” in: Brain Asymmetry, R. J. Davidson (ed.), MIT, Cambridge (1995), pp. 361–387.

    Google Scholar 

  22. 22.

    A. Dietrich, “The cognitive neuroscience of creativity,” Psychol. Bull. Rev., 11, No. 6, 1011–1026 (2004).

    Google Scholar 

  23. 23.

    M. Doppelmayr, W. Klimesch, T. Pachinger, and B. Ripper, “Individual differences in brain dynamics: important implications for the calculation of event-related band power,” Biol. Cyber., 79, No. 1, 49–57 (1998).

    Article  CAS  Google Scholar 

  24. 24.

    P. Etevenon, A. Bertaut, F. Mitermite, F. Eustache, J. Lepaisant, B. Lechevalier, and E. Zarifian, “Inter-and intra-individual probability maps in EEG cartography by use of nonparametric fisher tests,” Brain Topography, 2, No. 1/2, 81–89 (1989).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    A. Fink, R. H. Grabner, C. Neuper, and A. C. Neubauer, “EEG alpha band dissociation with increasing task demands,” Brain Res. Cogn. Brain Res., 24, No. 2, 252–259 (2005).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    A. Fink and A. C. Neubauer, “EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence,” Int. J. Psychophysiol., 23 February (e-publication ahead of print) (2006).

  27. 27.

    R. Fischer, “A cartography of the ecstatic and meditative state,” Science, 174, 897–904 (1971).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    J. Foulds, K. McSorley, J. Sneddon, C. Feyerabend, M. J. Jarvis, and M. Russell, “Effect of subcutaneous nicotine injections on EEG alpha frequency in non-smokers: a placebo-controlled pilot study,” Psychopharmacology, 115, No. 1, 163–166 (1994).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    M. Fumoto, I. Sato-Suzuki, Y. Seki, Y. Mohri, and A. Hideho, “Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition,” Neurosci. Res., 50, No. 3, 307–317 (2004).

    PubMed  Article  Google Scholar 

  30. 30.

    E. Gordon, “Integrative neuroscience,” Neuropsychopharmacol., 28, No. 1, S2–S8 (2003).

    Article  Google Scholar 

  31. 31.

    R. H. Grabner, A. Fink, A. Stipacek, C. Neuper, and A. C. Neubauer, “Intelligence and working memory systems: evidence of neural efficiency in alpha band ERD,” Brain Res. Cogn. Brain Res., 20, No. 2, 212–225 (2004).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    J. Guilford and R. Hoepfher, The Analysis of Intelligence, New York (1971).

  33. 33.

    G. S. Hooper, “Comparison of the distributions of classical and adaptively aligned EEG power spectra,” Int. J. Psychophysiol., 55, No. 2, 179–189 (2005).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    N. Jausovec and K. Jausovec, “Differences in resting EEG related to ability,” Brain Topogr., 12, No. 3, 229–240 (2000).

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    D. A. Kaiser, “Rethinking standard bands,” J. Neurotherapy, 5, No. 1/2, 96–101 (2001).

    Google Scholar 

  36. 36.

    K. Kamijo, Y. Nishihara, A. Hatta, T. Kaneda, T. Kida, T. Higashiura, and K. Kuroiwa, “Changes in arousal level by differential exercise intensity,” Clin. Neurophysiol., 115, No. 12, 2693–2698 (2004).

    PubMed  Article  Google Scholar 

  37. 37.

    J. M. Kilner, J. Mattout, R. Henson, and K. J. Friston, “Hemodynamic correlates of EEG: a heuristic,” Neuroimage, 28, No. 1, 280–286 (2005).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    K. Kirschfeld, “The physical basis of alpha waves in the electroencephalogram and the origin of the Berger effect,” Biol. Cybern., 92, 177–185 (2005).

    PubMed  Article  Google Scholar 

  39. 39.

    W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Brain Res. Rev., 29, No. 2–3, 169–195 (1999).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    V. Köpruner, G. Pfurtscheller, and L. Auer, “Quantitative EEG in normals and in patients with cerebral ischemia,” in: Brain Ischemia: Quantitative EEG and Imaging Techniques, G. Pfurtscheller, E. J. Jonkman, and F. Lopes da Silva (eds.), Elsevier, Amsterdam (1984), pp. 29–50).

    Google Scholar 

  41. 41.

    H. Laufs, EEG-correlated fMRI of human alpha activity,” Neuroimage, 19, No. 4, 1463–1476 (2003).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    H. Laufs, J. L. Holt, R. Elfont, M. Krams, J. S. Paul, K. Krakow, and A. Kleinschmidt, “Where the BOLD signal goes when alpha EEG leaves,” Neuroimage, 31, No. 4, 1408–1418 (2006).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    R. Llinas, U. Ribary, D. Contreras, and C. Pedroarena, “The neuronal basis for consciousness,” Phil. Trans. Roy. Soc. Lond. B. Biol. Sci., 353, 1841–1849 (1998).

    Article  CAS  Google Scholar 

  44. 44.

    C. Martindale, “Biological bases of creativity,” in: Handbook of Creativity, R. J. Sternberg (ed.), Cambridge University Press, Cambridge (1999), pp. 137–152.

    Google Scholar 

  45. 45.

    E. Martinez-Montes, P. A. Valde’s-Sosa, F. Miwakeichi, R. I. Goldman, and M. S. Cohen, “Concurrent EEG/fMRI analysis by multiway. Partial Least Squares,” Neuroimage, 22, No. 3, 1023–1034 (2004).

    PubMed  Article  Google Scholar 

  46. 46.

    Ch. M. Michel, M. Koukkou, and D. Lehmann, “EEG reactivity in high and low symptomatic schizophrenics, using source modelling in the frequency domain,” Brain Topogr., 5, No. 4, 38–39 (1993).

    Article  Google Scholar 

  47. 47.

    M. Molle, L. Marshall, H. L. Fehm, and J. Born, “EEG theta synchronization conjoined with alpha desynchronization indicate intentional encoding,” Eur. J. Neurosci., 15, No. 5, 923–928 (2002).

    PubMed  Article  Google Scholar 

  48. 48.

    D. V. Moretti, C. Babiloni, G. Binetti, E. Cassetta, G. Dal Forno, F. Ferreric, R. Ferri, B. Lanuzza, C. Miniussi, F. Nobili, G. Rodgriguez, S. Salineri, and P. M. Rossini, “Individual analysis of EEG frequency and band power in mild Alzheimer’s disease,” Clin. Neurophysiol., 115, No. 2, 299–308 (2004).

    PubMed  Article  Google Scholar 

  49. 49.

    E. Niedermeyer, “Alpha rhythms as physiological and abnormal phenomena,” Int. J. Psychophysiol., 26, No. 1–3, 31–49 (1997).

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    D. W. Orme-Johnson and C. T. Haynes, “EEG phase coherence, pure consciousness, creativity, and TM-Sidhi experiences,” Int. J. Neurosci., 13, No. 4, 211–217 (1981).

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    H. Petsche, S. Kaplan, A. von Stein, and O. Filz, “The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks,” Int. J. Psychophysiol., 26, No. 1–3, 77–97 (1997).

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., 110, 1842–1857 (1999).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    G. Pfurtscheller and A. Aranibar, “Event-related cortical desynchronization detected by power measurements of scalp EEG,” EEG. Clin. Neurol., 42, No. 2, 817–826 (1977).

    Article  CAS  Google Scholar 

  54. 54.

    Y. A. Pijnenburg, Y. Made, A. M. Van Cappellen Van Walsum, D. L. Knol, P. Scheltens, and C. J. Stam, “EEG synchronization likelihood in mild cognitive impairment and Alzheimer’s disease during a working memory task,” Clin. Neurophysiol., 115, No. 6, 1332–1339 (2004).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    P. Putz, M. Braeunig, and J. Wackermann, “EEG correlates of multimodal ganzfeld induced hallucinatory imagery,” Int. J. Psychophysiol., 61, No. 2, 167–178 (2006).

    PubMed  Article  Google Scholar 

  56. 56.

    R. A. Roche, P. M. Dockree, H. Garavan, J. J. Foxe, I. H. Robertson, and S. M. O’Mara, “EEG alpha power changes reflect response inhibition deficits after traumatic brain injury (TBI) in humans,” Neurosci. Lett., 362, No. 1, 1–5 (2004).

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    R. Shmelkina, “Some EEG findings caused by real and imaginary stimuli in patients and healthy subjects,” Appl. Psychophys. Biofeedback, 24, No. 2, 143 (1999).

    Google Scholar 

  58. 58.

    D. K. Simonton, “Creativity. Cognitive, personal, developmental, and social aspects,” Amer. Psychol., 55, No. 1, 151–158 (2000).

    Article  CAS  Google Scholar 

  59. 59.

    W. Singer, A. K. Engel, and A. S. Kreiter, “Neuronal assemblies: necessity, signature and detectability,” Trends Cogn. Sci., 1, 252–261 (1997).

    Article  Google Scholar 

  60. 60.

    R. J. Sternberg and T. I. Lubart, “Investing in creativity,” Amer. Psychol., 7, 677–688 (1996).

    Article  Google Scholar 

  61. 61.

    A. Stipacek, R. H. Grabner, C. Neuper, A. Fink, and A. C. Neubauer, “Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load,” Neurosci. Lett., 353, No. 3, 193–196 (2003).

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    S. Szava, P. A. Valde’s-Sosa, R. Biscay, L. Gala’n, J. Bosch, I. Clark, and J. C. Jiminez, “High resolution quantitative EEG analysis,” Brain Topogr., 6, 211–219 (1994).

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: An EEG study,” Neurosci. Lett., 404, No. 2, 39–43 (2006).

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    A. Von Stein and J. Sarnthein, “Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization,” Int. J. Psychophysiol., 38, 301–313 (2000).

    Article  Google Scholar 

  65. 65.

    P. M. Vespa, W. J. Boscardin, D. A. M. Hovda, D. L. Arthur, M. R. Nuwer, N. A. Martin, V. Nenov, T. C. Glenn, M. Bergsneider, D. F. Kelly, and D. P. Becker, “Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury,” J. Neurosurg., 97, No. 1, 84–92 (2002).

    PubMed  Article  Google Scholar 

  66. 66.

    V. Wespatat, F. Tennigkeit, and W. Singer, “Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex,” J. Neurosci., 13, No. 41, 9067–9069 (2004).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. M. Bazanova.

Additional information


Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 93, No. 1, pp. 14–26, January, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bazanova, O.M., Aftanas, L.I. Individual measures of electroencephalogram alpha activity and non-verbal creativity. Neurosci Behav Physi 38, 227–235 (2008).

Download citation

Key Words

  • electroencephalogram
  • individual alpha-activity frequency
  • individual alpha-range width
  • individual alpha spindle characteristics
  • non-verbal creativity