Skip to main content
Log in

Comparative analysis of the persistence of a conditioned passive avoidance reflex in rats with different forms of inherited hypertension

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The characteristics of anxiety behavior and reproduction of a conditioned passive avoidance reflex acquired in response to a single combination with an unconditioned aversive stimulus were studied in NISAG rats with inherited stress-sensitive arterial hypertension and spontaneously hypertensive SHR rats. SHR rats were characterized by hyperactive behavior, very low levels of anxiety, and poor reproduction of the conditioned reflex as compared with NISAG and control Wistar and WAG rats. Intermediate-anxiety NISAG rats showed no difficulties in acquiring and subsequently retaining the conditioned reflex. These differences in the ability to undergo single-combination learning in rats with different forms of hypertension suggest that memory processes are independent of elevated arterial blood pressure. The effects of the genetic characteristics of behavior and emotional status of these animals on memory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Kaluev, Stress, Anxiety, and Behavior [in Russian], Kiev (1998).

  2. D. R. Kudryashova, A. L. Markel’, T. V. Sharova, and G. S. Yakobson, “Effects of neonatal handling of NISAG rats with stress-sensitive arterial hypertension,” Byull. Éksperim. Biol. Med., 137, No. 4, 3909–393 (2004).

    Google Scholar 

  3. L. V. Loskutova and N. I. Dubrovina, “Effects of the duration of adaptation to laboratory conditions on the formation of a passive avoidance reflex,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 9, 1172–1176 (2002).

    Google Scholar 

  4. L. V. Loskutova and L. M. Zelenkina, “Impairment of latent inhibition in OXYS rats with genetically determined premature aging syndrome,” Zh. Vyssh. Nerv. Deyat., 52, No. 3, 366–370 (2002).

    CAS  Google Scholar 

  5. A. L. Markel’, “A genetic model of stress-induced arterial hypertension,” Izv. Akad. Nauk SSSR Ser. Biol., 3, 466–469 (1985).

    Google Scholar 

  6. A. L. Markel’, “Behavior of rats with inherited arterial hypertension,” Zh. Vyssh. Nerv. Deyat., 36, No. 5, 956–962 (1986).

    CAS  Google Scholar 

  7. M. Albert, “Neuropsychological and neurophysiological changes in healthy adult humans across the age range,” Neurobiol. Ageing, 4, 623–625 (1993).

    Article  Google Scholar 

  8. W. H. Birkenhager, F. Forette, M. L. Seuz, J. G. Wang, and J. A. Staessen, “Blood pressure, cognitive functions, and prevention of dementias in older patients with hypertension,” Arch. Intern. Med., 161, No. 2, 152–156 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. M. B. Calzavara, G. B. Lopez, V. C. Abilio, R. H. Silva, and R. Frussa-Filho, “Role of anxiety levels in memory performance of spontaneously hypertensive rats,” Behav. Pharmacol., 15, No. 8, 545–553 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. C. M. Hernandez, H. Hoifodt, C. Pharm, and A. V. Terry, “Spontaneously hypertensive rats: further evaluation of age-related memory performance and cholinergic marker expression,” J. Psychiatr. Neurosci., 28, No. 3, 197–209 (2003).

    Google Scholar 

  11. N. Nirawa, Y. Uehara, Y. Kawabata, A. Numabe, T. Gomi, T. Ikeda, T. Suzuki, A. Goto, T. Toyoaka, and M. Omata, “Long-term inhibition of renin-angiotensin system sustains memory function in aged Dahl rats,” Hypertension, 34, No. 3, 496–502 (1999).

    Google Scholar 

  12. F. A. Huppert, “Age-related changes in memory: learning and remembering new information,” in: Handbook of Neuropsychology, F. Boller and J. Grafman (eds.), Elsevier Science Publishers B.V. (1991), Ch. 7, pp. 123–147.

  13. E. B. Johansen and T. Sagvolden, “Response disinhibition may be explained as an extinction deficit in an animal model of attention-deficit/hyperactivity disorder (ADHD),” Behav. Brain Res., 149, 183–196 (2004).

    Article  PubMed  Google Scholar 

  14. I. Kadish, T. van Groen, and J. M. Wyss, “Chronic, severe hypertension does not impair spatial learning and memory in Sprague-Dawley rats,” Learn. Mem., 8, 104–111 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. S. Knardahl and K. Karlsen, “Passive-avoidance behavior of spontaneously hypertensive rats,” Behav. Neurol. Biol., 42, No. 1, 9–22 (1984).

    Article  CAS  Google Scholar 

  16. R. S. Lazarus, “From psychology stress to the emotions: a history of changing outlooks,” Ann. Rev. Psychol., 44, 1–21 (1993).

    Article  CAS  Google Scholar 

  17. A. Meneses and E. Hong, “Spontaneously hypertensive rats: A potential model to identify drugs for treatment of learning disorders,” Hypertension, 31, 968–972 (1988).

    Google Scholar 

  18. J. Micheau and B. Van Marrewijk, “Stimulation of 5-HT1A receptors by systemic or medial septum injection induced anxiogenic-like effects and facilitates acquisition of a spatial discrimination task in mice,” Prog. Neuropsychopharmacol. Biol. Psychiatr., 23, No. 6, 1113–1133 (1999).

    Article  CAS  Google Scholar 

  19. P. Mormede, E. Moneva, C. Bruneval, F. Chaouloff, and M.-P. Moisan, “Marker-assisted selection of a neuro-behavioural trait related to behavioural inhibition in the SHR strain, an animal model of ADHD,” Genes, Brain Behav., 1, 111–116 (2002).

    Article  CAS  Google Scholar 

  20. R. D. S. Prediger, D. Fernandes, and R. N. Takahashi, “Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats,” Behav. Brain Res., 159, 197–205 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. R. D. S. Prediger, F. A. Pamplona, D. Fernandes, and R. N. Takahashi, “Caffeine improves spatial learning deficits in an animal model of attention deficit hyperactivity disorder (ADHD)-the spontaneously hypertensive rat (SHR),” Int. J. Neuropsychopharmacol., 8, 1–12 (2005).

    Article  Google Scholar 

  22. A. Ramos, O. Berton, P. Mormede, and F. Chaouloff, “A multiple test study of anxiety-related behaviours in six inbred rat strains,” Behav. Brain Res., 86, 57–69 (1997).

    Article  Google Scholar 

  23. R. J. Rogers and A. Dalvi, “Anxiety, defense and the elevated plusmaze,” Neurosci. Biobehav. Rev., 21, No. 5, 801–810 (1997).

    Article  Google Scholar 

  24. V. Russell, A. Villiers, T. Sagvolden, M. Lamm, and J. Taljaard, “Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of Attention-Deficit Hyperactivity Disorder-the spontaneously hypertensive rat,” Brain Res., 676, 343–351 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. T. Sagvolden, “Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD),” Neurosci. Biobehav. Rev., 24, No. 1, 31–39 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. B. K. Saxby, F. Harrington, I. G. McKeith, K. Wesnes, and G. A. Ford, “Effects of hypertension on attention, memory, and executive function in older adults,” Health Psychol., 22, No. 6, 587–591 (2003).

    Article  PubMed  Google Scholar 

  27. R. H. Silva and R. Frussa-Filho, “The plus-maze discriminative avoidance task: a new model to study memory-anxiety interaction. Effect of chlordiazepoxide and caffeine,” J. Neurosci. Meth., 102, No. 2, 117–125 (2000).

    Article  CAS  Google Scholar 

  28. M. H. Skinner, D. X. Tan, M. Grossman, M. T. Pyne, and R. K. Mahurin, “Effects of captopril and propranolol on cognitive function and cerebral blood flow in aged hypertensive rats,” J. Gerontol. Biol. Sci., 6, B454–B460 (1996).

    Google Scholar 

  29. I. Skoog, “The relationship between blood pressure and dementia: A review,” Biomed. Pharmacother., 51, 367–375 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Starr and L. J. Whalley, “Differential cognitive outcomes in the hypertensive old people in Edinburgh study,” J. Neurol. Sci., 229-230, No. 1, 103–107, (2005).

    Article  PubMed  Google Scholar 

  31. J. R. Sutterer, J. Perry, and W. DeVito, “Two-way shuttle-box and level-press avoidance in the spontaneously hypertensive and normotensive rat,” J. Comp. Physiol. Psychol., 94, 155–163 (1980).

    Article  PubMed  CAS  Google Scholar 

  32. A. V. Terry, Jr., C. M. Hernandez, J. J. Buccafusco, and M. Gattu, “Deficits in spatial learning and nicotinic-acetylcholine receptors in older, spontaneously hypertensive rats,” Neurosci., 101, No. 2, 357–368 (2000).

    Article  CAS  Google Scholar 

  33. H. Togashi, S. Kimura, M. Matsumoto, M. Yoshioka, M. Minami, and H. Saito, “Cholinergic changes in the hippocampus of stroke-prone spontaneously hypertensive rats,” Stroke, 27, No. 3, 520–526 (1996).

    PubMed  CAS  Google Scholar 

  34. D. Viggiano, D. Vallone, and S. Adolfo, “Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling,” Neural. Plast., 11, No. 1–2, 97–114 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. P. Waelti, A. Dickinson, and W. Schultz, “Dopamine responses comply with basic assumption of formal learning theory,” Nature, 412, 43–48 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. P. M. Wall, “Concurrent modulation of anxiety and memory,” Behav. Brain Res., 109, 229–241 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. F. L. Wilkie, C. Eisdorfer, and J. B. Nowlin, “Memory and blood pressure in the aged,” Exptl. Ageing Res., 2, 3–16 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 92, No. 4, pp. 440–448, April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loskutova, L.V., Dubrovina, N.I. & Markel’, A.L. Comparative analysis of the persistence of a conditioned passive avoidance reflex in rats with different forms of inherited hypertension. Neurosci Behav Physiol 37, 577–582 (2007). https://doi.org/10.1007/s11055-007-0055-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0055-y

Key words

Navigation