Skip to main content
Log in

Encoding of stimulus movement parameters in the cat visual system

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Analysis of matrixes consisting of the numbers of spikes evoked by the movement of simple and complex stimuli in cat visual cortex neurons by the principal components method demonstrated vector encoding. The responses of direction detectors to the movement of points and orientation detectors to changes in the angle of a line were encoded independently in areas V1 and V2 of the cortex. Each type of detector was represented by excitation of two cardinal neurons generating sine and cosine functions. The responses of neurons in the associative cortex with selectivity for the direction of movement of specifically oriented bars depended on four cardinal neurons formed by summation of the excitations of the cardinal neurons of the directional and orientational channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Ketleris, Detection of the Movement of Objects by Neurons in the Rabbit Visual Cortex [in Russian], Author’s abstract of thesis for doctorate in biological sciences, I. P. Pavlov Institute of Physiology, Leningrad (1979).

    Google Scholar 

  2. Dictionary of Physiological Terms [in Russian], Nauka, Moscow (1987).

  3. E. N. Sokolov and H. Vaitkevicius, The Neurointellect [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  4. A. Ya. Supin, Neural Mechanisms of Visual Analysis [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  5. R. Satinskas, D. Stabinyte, A. Pleskacauskas, and H. Vaitkevicius, “Effects of the brightness ratio and the angle between the trajectories of movement of two stimuli on the perception of the direction of movement of one of the stimuli,” Psikhologiya, 24, 58–68 (2001).

    Google Scholar 

  6. R. Satinskas, D. Stabinyte, A. Pleskacauskas, A. Shvegzda, H. Vaitkevicius, and E. N. Sokolov, “ Encoding of stimulus motion parameters in the cat visual system: I. Studies of the responses of directionally sensitive neurons to the movement of a spot in the receptive field,” Sensor Sistemy, 5, No. 2, 107–113 (2003).

    Google Scholar 

  7. T. J. Andres and D. Schluppeck, “Ambiguity in the perception of moving stimuli is resolved in favour of the cardinal axes,” Vision Res., 40, 3485–3493 (2000).

    Article  Google Scholar 

  8. H. B. Barlow and W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina, ” J. Physiol., 178, 477–504 (1965).

    PubMed  CAS  Google Scholar 

  9. O. J. Braddick, “Low-level and high-level processes in apparent movement,” Phil. Trans. Roy. Soc. London, 290, No. 1038, 137–151 (1980).

    CAS  Google Scholar 

  10. V. Brice, P. R. Green, and M. A. Georgeson, Visual Perception (Physiology, Psychology and Ecology), Psychol. Press (1996).

  11. D. C. Burr, D. R. Badcock, and J. Ross, “Cardinal axes for radial and circular motion, revealed by summation and masking,” Vision Res., 41, No. 4, 473–481 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. B. Dreher, C. Wang, K. J. Turlejsky, R. L. Djavadian, and W. Burke, “Areas PMLS and 21a of the cat visual cortex: two functionally distinct areas,” Cerebr. Cortex, 6, 585–599 (1996).

    Article  CAS  Google Scholar 

  13. E. Grossman and R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision res., 39, 3721–3727 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. G. Johansson, “Visual perception of biological motion and a model for its analysis,” Percept. Psychophysics, 14, No. 3, 201–211 (1973).

    Google Scholar 

  15. M. B. Mandler and W. Makous, “A three channel model of temporal frequency perception,” Vision Res., 24, 1881–1887 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. B. R. Payne, “Evidence for visual cortical area homologs in cat and macaque monkey,” Cerebr. Cortex, 3, 1–25 (1993).

    Article  CAS  Google Scholar 

  17. I. N. Pigarev and E. I. Rodionova, “Two visual areas located in the middle suprasylvian gyrus (cytoarchitectonic field 7) of the cat cortex,” Neurosci., 85, 717–732 (1998).

    Article  CAS  Google Scholar 

  18. N. Qian, R. A. Andersen, and E. H. Adelson, “Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics,” J. Neurosci., 14, No. 12, 7357–7366 (1994).

    PubMed  CAS  Google Scholar 

  19. W. Reichardt and T. Poggio, “Figure-ground discrimination by relative movement in the visual system of the fly,” Biol. Cybernetics, 35, 81–95 (1979).

    Article  Google Scholar 

  20. O. Ruksenas and R. Satinskas, “Sympathectomy and d-tubocurarine chloride in immobilisation of the eye in the cat,” Scand. J. Lab. Amin. Sci., 23, No. 1, 425–430 (1996).

    Google Scholar 

  21. A. T. Smith and W. Curran, “Continuity-based and discontinuitybased segmentation in transparent and spatially segregated global motion,” Vision. Res., 40, 1115–1123 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. A. T. Smith, N. E. Scott-Samuel, and K. D. Singh, “Global motion adaptation,” Vision Res., 40, 1069–1075 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. K. Toyama, K. Fuji, and K. Umetani, “Functional differentiation between the anterior and posterior Clare-Bishop cortex of the cat,” Exptl. Brain Res., 81, No. 2, 221–233 (1990).

    CAS  Google Scholar 

  24. K. Toyama, H. Kitaoji, and K. Umetani, “Binocular neuronal responsiveness in Clare-Bishop cortex of Siamese cats,” Exptl. Brain Res., 86, No. 3, 471–482 (1991).

    CAS  Google Scholar 

  25. J. Touryan, B. Lau, and Y. Dan, “Isolation of relevant visual features from random stimuli for cortical complex cells,” J. Neurosci., 22, No. 24, 10811–10818 (2002).

    Google Scholar 

  26. M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vision Res., 39, 3960–3974 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. S. N. Watamaniuk and R. Sekuler, “Temporal and spatial integration in dynamic random-dot stimuli, ” Vision Res., 32, 2341–2347 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. S. N. Watamaniuk, R. Sekuler, and D. R. Williams, “Direction perception in complex dynamic displays: the integration of direction information,” Vision Res., 29, 47–59 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. D. W. Williams and R. Sekuler, “Coherent global motion perception from stochastic local motion, ” Vision Res., 24, 55–62 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. S. M. Zeki, “Functional organization of a visual areas located in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (Eng.), 236, 549–573 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 56, No. 2, pp. 228–235, March–April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, E.N., Satinskas, R., Stabinyte, D. et al. Encoding of stimulus movement parameters in the cat visual system. Neurosci Behav Physiol 37, 395–402 (2007). https://doi.org/10.1007/s11055-007-0026-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0026-3

Key words

Navigation