Skip to main content
Log in

Analysis of auditory information in the brains of cetaceans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

A characteristic feature of the brains of toothed cetaceans is the exclusive development of the auditory neural centers. The location of the projection sensory zones, including the auditory zones, in the cetacean cortex is significantly different from that in other mammals. The characteristics of evoked potentials demonstrate the existence of several functional subdivisions in the auditory cortex. Physiological studies of the auditory neural centers of cetaceans have been performed predominantly using the evoked potentials method. Of the several types of evoked potentials available for non-invasive recording, the most detailed studies have been performed using short-latency auditory evoked potentials (SLAEP). SLAEP in cetaceans are characterized by exclusively high time resolution, with integration times of about 0.3 msec, which on the frequency scale corresponds to a cut-off frequency of 1700 Hz. This is more than an order of magnitude greater than the time resolution of hearing in terrestrial mammals. The frequency selectivity of hearing in cetaceans has been measured using several versions of the masking method. The acuity of frequency selectivity in cetaceans is several times greater than that in most terrestrial mammals (except bats). The acute frequency selectivity allows the discrimination of very fine spectral patterns of sound signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Vel’min and N. A. Dubrovskii, “Auditory analysis of dolphin sound impulses,” Dokl. Akad. Nauk SSSR, 225, 562–565 (1975).

    Google Scholar 

  2. V. A. Voronov and I. M. Stosman, “Frequency-threshold characteristics of subcortical elements of the auditory analyzer of Phocoena phocoena,” Zh. Évolyuts. Biokhim. Fiziol., 13, 619–622 (1977).

    Google Scholar 

  3. V. P. Zvorykin, “Morphological bases of the ultrasound and echolocating properties of dolphins,” Arkh. Anat. Gistol. Émbriol., 45, No. 7, 3–17 (1963).

    PubMed  CAS  Google Scholar 

  4. V. S. Kesarev, “Structural organization of the dolphin limbic cortex,” Arkh. Anat. Gistol. Émbriol., 56, No. 6, 28–35 (1969).

    PubMed  CAS  Google Scholar 

  5. V. E. Kesarev, “Some data on neuronal organization of the dolphin neocortex,” Arkh. Anat. Gistol. Émbriol., 59, No. 8, 71–77 (1970).

    PubMed  CAS  Google Scholar 

  6. V. O. Klishin and V. V. Popov, “Hearing characteristics of a harbor porpoise Phocoena phocoena,” Dokl. Ros. Akad. Nauk., 370, 413–415 (2000).

    CAS  Google Scholar 

  7. T. F. Ladygina, A. M. Mass, and A. Ya. Supin, “Multiple sensory projections in the dolphin cerebral cortex,” Zh. Vyssh. Nerv. Deyat., 28, 1047–1053 (1978).

    CAS  Google Scholar 

  8. T. F. Ladygina and A. Ya. Supin, “The acoustic projection into the dolphin cerebral cortex,” Fiziol. Zh. SSSR, 56, 1554–1560 (1970).

    PubMed  CAS  Google Scholar 

  9. T. F. Ladygina and A. Ya. Supin, “Evolution of the cortical zones of terrestrial and marine mammals,” in: Morphology, Physiology, and Acoustics of Marine Mammals [in Russian], Nauka, Moscow (1974), pp. 6–15.

    Google Scholar 

  10. V. V. Popov and A. Ya. Supin, “Identification of the characteristics of dolphin hearing using evoked potentials,” Fiziol. Zh. SSSR, 62, 550–558 (1976).

    PubMed  CAS  Google Scholar 

  11. V. V. Popov and A. Ya. Supin, “Responses of the dolphin auditory cortex to complex acoustic stimuli,” Fiziol. Zh. SSSR, 62, 1780–1785 (1976).

    PubMed  CAS  Google Scholar 

  12. V. V. Popov and A. Ya. Supin, “Identification of hearing characteristics in dolphins using brainstem evoked potentials,” Dokl. Akad. Nauk SSSR, 283, 496–499 (1985).

    Google Scholar 

  13. V. V. Popov and A. Ya. Supin, “Auditory cortex evoked potentials recorded from the surface of the body in dolphins,” Dokl. Akad. Nauk SSSR, 288, 756–759 (1986).

    PubMed  CAS  Google Scholar 

  14. V. V. Popov and A. Ya. Supin, “Characteristics of hearing in the beluga,” Dokl. Akad. Nauk SSSR, 294, 1255–1258 (1987).

    Google Scholar 

  15. V. E. Sokolov, T. F. Ladygina, and A. Ya. Supin, “Location of the sensory zones in the dolphin cerebral cortex,” Dokl. Akad. Nauk SSSR, 202, 490–493 (1972).

    PubMed  CAS  Google Scholar 

  16. A. Ya. Supin, L. M. Mukhametov, T. F. Ladygina, V. V. Popov, A. M. Mass, and I. G. Polyakova, Electrophysiological Studies of the Dolphin Brain [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  17. A. Ya. Popov, M. G. Pletenko, and M. B. Tarakanov, “The frequency-resolving ability of hearing in the dolphin,” Dokl. Akad. Nauk SSSR, 323, 794–797 (1992).

    Google Scholar 

  18. A. Ya. Supin and V. V. Popov, “Cycles of restoration of evoked brainstem potentials in dolphins in conditions of paired acoustic stimulation,” Dokl. Akad. Nauk SSSR, 283, 740–743 (1985).

    Google Scholar 

  19. A. Ya. Supin and V. V. Popov, “The frequency-resolving ability of hearing in the dolphin,” Dokl. Akad. Nauk SSSR, 300, 1013–1016 (1988).

    PubMed  Google Scholar 

  20. W. W. L. Au, “Target detection in noise by echolocating dolphins,” in: Sensory Abilities of Cetaceans. Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein (eds.), Plenum, New York (1990), pp. 203–216.

    Google Scholar 

  21. W. W. L. Au, P. W. B. Moore, and D. A. Pawloski, “Detection of complex echoes in noise by an echolocating dolphin,” J. Acoust. Soc. Amer., 83, 662–668 (1988).

    Article  CAS  Google Scholar 

  22. W. W. L. Au and J. O. Pawloski, “Detection of rippled noise by an Atlantic bottlenose dolphin,” J. Acoust. Soc. Amer., 86, 591–596 (1989).

    Article  Google Scholar 

  23. N. G. Bibikov, “Auditory brainstem responses in the harbor porpoise Phocoena phocoena,” in: Marine Mammal Sensory Systems, J. A. Thomas, R. A. Kastelein, and A. Ya. Supin (eds.), Plenum, New York (1992), pp. 197–211.

    Google Scholar 

  24. A. C. Breathnach, “The cetacean nervous system,” Biol. Rev., 35, 187–230 (1960).

    Google Scholar 

  25. T. H. Bullock, A. D. Grinnell, F. Ikezono, K. Kameda, Y. Katsuki, M. Nomoto, O. Sato, N. Suga, and K. Yanagisava, “Electrophysiological studies of the central auditory mechanisms in cetaceans,” Z. Vergl. Physiol., 59, 117–156 (1968).

    Google Scholar 

  26. T. H. Bullock and S. H. Ridgway, “Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds,” J. Neurobiol., 3, 79–99 (1972).

    Article  PubMed  CAS  Google Scholar 

  27. A. S. DeGraaf, Anatomical Aspects of the Cetacean Brainstem, Van Gorcum. Assen., Netherlands (1967).

    Google Scholar 

  28. W. F. Dolphin, “Steady-state auditory-evoked potentials in three cetacean species elicited using amplitude-modulated stimuli,” in: Sensory Systems of Aquatic Mammals, R.A. Kastelein, J. A. Thomas, and P. E. Nachtigall (eds.), De Spil, Woerden, The Netherlands (1995), pp. 25–47.

    Google Scholar 

  29. W. F. Dolphin, W. W. L. Au, and P. Nachtigall, “Modulation transfer function to low-frequency carriers in three species of cetaceans,” J. Comp. Physiol., A177, 235–245 (1995).

    Google Scholar 

  30. N. A. Dubrovskiy, “On the two auditory systems in dolphins,” in: Sensory Abilities of Cetaceans. Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein (eds.), Plenum, New York (1990), pp. 233–254.

    Google Scholar 

  31. N. A. Dubrovsky, T. V. Zorikov, O. Sh. Kvighinadze, and M. M. Kuratishvili, “Mechanisms of signal discrimination and identification in the auditory system of Tursiops truncatus,” in: Marine Mammal Sensory Systems, J. A. Thomas, R. A. Kastelein, and A. Ya. Supin (eds.), Plenum, neurotransmitter (1992), pp. 235–240.

  32. H. Elias and D. Schwartz, “Surface areas of the cerebral cortex of mammals determined by stereological methods,” Science, 166, 111–113 (1969).

    Article  PubMed  CAS  Google Scholar 

  33. J. L. Garey and A. V. Revishchin, “Structure and thalamocortical relations of the cetacean sensory cortex: Histological, tracer and immunochemical studies,” in: Sensory Abilities of Cetaceans. Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein (eds.), Plenum, New York (1990), pp. 19–30.

    Google Scholar 

  34. E. Grünthal, “Über den Primatencharakter des Gehirns von Delphinus delphis,” Monatschr. Psychiatr. Neurol., 105, 249–274 (1942).

    Article  Google Scholar 

  35. M. A. Hofman, “Size and shape of the cerebral cortex in mammals. I. The cortical surface,” Brain Behav. Evol., 27, 28–40 (1985).

    PubMed  CAS  Google Scholar 

  36. C. S. Johnson, “Important areas for future cetacean auditory study,” in: Animal Sonar Systems, R. G. Busnel and J. F. Fish (eds.), Plenum, New York (1980).

    Google Scholar 

  37. R. A. Johnson, P. W. B. Moore, M. W. Stoermer, J. L. Pawloski, and L. C. Anderson, “Temporal order discrimination within the dolphin critical interval,” in: Animal Sonar: Processes and Performance, P. E. Nachtigall and P. W. B. Moore (eds.), Plenum, New York (1988), pp. 317–321.

    Google Scholar 

  38. V. S. Kesarev, L. I. Malofeyeva, and O. V. Trykova, “Ecological specificity of cetacean neocortex,” J. Hirnforsch., 18, 447–460 (1977).

    PubMed  CAS  Google Scholar 

  39. V. O. Klishin, V. V. Popov, and A. Ya. Supin, “Hearing capabilities of a beluga whale, Delphinapterus leucas,” Aquatic Mammals, 236, 212–228 (2000).

    Google Scholar 

  40. L. Kruger, “The thalamus of the dolphin (Tursiops truncatus) and comparison with other mammals,” J. Comp. Neurol., 11, 133–194 (1959).

    Article  Google Scholar 

  41. O. R. Langworthy, “Factors determining the differentiation of the cerebral cortex in sea-living mammals (the Cetacea). A study of the brain of the porpoise, Tursiops truncatus,” Brain, 54, 225–236 (1931).

    Article  Google Scholar 

  42. R. A. Lende and W. I. Welker, “An unusual sensory area in the cerebral neocortex of the bottle-nose dolphin, Tursiops truncatus,” Brain Res., 45, 555–560 (1972).

    Article  PubMed  CAS  Google Scholar 

  43. P. W. B. Moore, “Dolphin echolocation and audition,” in: Animal Sonar: Processes and Performance, P. E. Nachtigall and P. W. B. Moore (eds.), Plenum, New York (1988), pp. 161–168.

    Google Scholar 

  44. P. W. B. Moore, R. W. Hall, W. A. Friedl, and P. E. Nachtigall, “The critical interval in dolphin echolocation: What is it?” J. Acoust. Soc. Amer., 76, 314–317 (1984).

    Article  CAS  Google Scholar 

  45. P. J. Morgane and I. I. Glezer, “Sensory neocortex in dolphin brain,” in: Sensory Abilities of Cetaceans. Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein (eds.), Plenum, New York (1990), pp. 107–136.

    Google Scholar 

  46. P. J. Morgane, M. S. Jacobs, and A. Galaburda, “Conservative features of neocortical evolution in dolphin brain,” Brain Behav. Evol., 21, 176–184 (1985).

    Google Scholar 

  47. P. J. Morgane, M. S. Jacobs, and A. Galaburda, “Evolutionary morphology of the dolphin brain,” in: Dolphin Cognition and Behavior. A Comparative Approach, R. J. Schusterman, J. A. Thomas, and F. G. Wood (eds.), Hillsdale, Lawrence Erlbaum Associates (1986), pp. 5–29.

    Google Scholar 

  48. P. E. Nachtigall, M. M. Yuen, T. A. Mooney, and K. A. Taylor, “Hearing thresholds of a stranded Rissos dolphin,” J. Acoust. Soc. Amer., 116, 2535 (2004).

    Google Scholar 

  49. K. K. Osen and J. Jansen, “The cochlear nuclei in the common porpoise Phocaena phocaena,” J. Comp. Neurol., 125, 223–258 (1965).

    Article  Google Scholar 

  50. G. Pilleri, “Über die Anatomie des Gehirns des Ganges Delphins, Platanista gangetica,” Rev. Suisse Zool., 73, 113–118 (1964).

    Google Scholar 

  51. G. Pilleri and M. Gihr, “On the brain of the Amazon dolphin Inia geoffrensis de Blainville (Cetacea, Susuidae,” Experientia, 24, 932–934 (1968).

    Article  PubMed  CAS  Google Scholar 

  52. V. V. Popov and V. O. Klishin, “EEG study of hearing in the common dolphin, Delphinus delphis,” Aquatic Mammals, 24, 13–20 (1998).

    Google Scholar 

  53. V. V. Popov, T. F. Ladygina, and A. Ya. Supin, “Evoked potentials in the auditory cortex of the porpoise, Phocoena phocoena,” J. Comp. Physiol., A158, 705–711 (1986).

    Article  Google Scholar 

  54. V. V. Popov and A. Ya. Supin, “Auditory brain stem responses in characterization of dolphin hearing,” J. Comp. Physiol., A166, 385–393 (1990).

    Google Scholar 

  55. V. V. Popov and A. Ya. Supin, “Electrophysiological studies of hearing in some cetaceans and manatee,” in: Sensory Abilities of Cetaceans. Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein (eds.), Plenum, New York (1990), pp. 405–415.

    Google Scholar 

  56. V. V. Popov and A. Ya. Supin, “Detection of temporal gaps in noise in dolphins: Evoked-potential study,” J. Acoust. Soc. Amer., 102, 1169–1176 (1997).

    Article  CAS  Google Scholar 

  57. V. V. Popov and A. Ya. Supin, “Auditory evoked responses to rhythmic sound pulses in dolphins,” J. Comp. Physiol., A183, 519–524 (1998).

    Article  Google Scholar 

  58. V. V. Popov and A. Ya. Supin, “Contribution of various frequency bands to ABR in dolphins,” Hearing Res., 151, 250–260 (2001).

    Article  CAS  Google Scholar 

  59. V. V. Popov, A. Ya. Supin, and V. O. Klishin, “Frequency tuning curves of the dolphin’s hearing: Envelope-following response study,” J. Comp. Physiol., A178, 571–578 (1995).

    Google Scholar 

  60. V. V. Popov, A. Ya. Supin, and V. O. Klishin, “Frequency tuning of the dolphin’s hearing as revealed by auditory brain-stem response with notch-noise masking,” J. Acoust. Soc. Amer., 102, 3795–3801 (1997).

    Article  CAS  Google Scholar 

  61. S. H. Ridgway, “Electrophysiological experiments on hearing in odontocetes,” in: Animal Sonar Systems, R. G. Busnel and J. F. Fish (eds.), Plenum, New York (1980), 483–493.

    Google Scholar 

  62. S. H. Ridgway, “Dolphin brain size,” in: Research on Dolphins, M. M. Bryden and R. Harrison (eds.), Clarendon, Oxford (1986), pp. 59–70.

    Google Scholar 

  63. S. H. Ridgway, T. H. Bullock, D. A. Carter, R. L. Seely, D. Woods, and R. Galambos, “Auditory brainstem response in dolphins,” Proc. Natl. Acad. Sci. USA, 78, 1943–1947 (1981).

    Article  PubMed  CAS  Google Scholar 

  64. W. Riese, “Formprobleme des Gehirns. Zweite Mitteilung: Über die Hirnrinde der Whale,” J. Psychol. Neurol., 31, 275–278 (1925).

    Google Scholar 

  65. M. Rose, “Der Grundplan der Cortextektonic beim Delphin,” J. Psychol. Neurol., 32, 161–169 (1926).

    Google Scholar 

  66. A. Ya. Supin, M. G. Pletenko, and M. B. Tarakanov, “Frequency resolving power of the auditory system in a bottlenose dolphin (Tursiops truncatus),” in: Marine Mammal Sensory Systems, J. A. Thomas, R. A. Kastelein, and A. Ya. Supin (eds.), Plenum, New York (1992), pp. 287–293.

    Google Scholar 

  67. A. Ya. Supin and V. V. Popov, “Frequency-selectivity of the auditory system in the bottlenose dolphin, Tursiops truncatus,” in: Sensory Abilities of Cetaceans. Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein (eds.), Plenum, New York (1990), pp. 385–393.

    Google Scholar 

  68. A. Ya. Supin and V. V. Popov, “Envelope-following response and modulation transfer function in the dolphin’s auditory system,” Hearing Res., 92, 38–46 (1995).

    Article  CAS  Google Scholar 

  69. A. Ya. Supin and V. V. Popov, “Frequency tuning and temporal resolution in dolphins,” in: Sensory Systems of Aquatic Mammals, R. A. Kastelein, J. A. Thomas, and P. E. Nachtigall (eds.), De Spil, Woerden, The Netherlands (1995), pp. 95–110.

    Google Scholar 

  70. A. Ya. Supin and V. V. Popov, “Temporal resolution in the dolphin’s auditory system revealed by double-click evoked potential study,” J. Acoust. Soc. Amer., 97, 2586–2593 (1995).

    Article  Google Scholar 

  71. A. Ya. Supin, V. V. Popov, and V. O. Klishin, “ABR frequency tuning curves in dolphins,” J. Comp. Physiol., A173, 649–656 (1993).

    Google Scholar 

  72. A. Ya. Supin, V. V. Popov, and A. M. Mass, The Sensory Physiology of Aquatic Mammals, Kluwer, Boston (2001).

    Google Scholar 

  73. M. D. Szymanski, D. E. Bain, K. Kiehl, S. Pennington, S. Wong, and K. R. Henry, “Killer whale (Orcinus area) hearing: Auditory brainstem response and behavioral audiograms,” J. Acoust. Soc. Amer., 106, 1134–1141 (1999).

    Article  CAS  Google Scholar 

  74. M. D. Szymanski, A. Ya. Supin, D. E. Brain, and K. R. Henry, “Killer whale (Orcinus area) auditory evoked potentials to rhythmic clicks,” Marine Mammal Sci., 14, 676–691 (1998).

    Article  Google Scholar 

  75. M. B. Tarakanov, M. G. Pletenko, and A. Ya. Supin, “Frequency resolving power of the dolphin’s hearing measured by rippled noise,” Aquatic Mammals, 22, 141–152 (1996).

    Google Scholar 

  76. J. M. Zook and R. A. DiCaprio, “A potential system of delay-lines in the dolphin auditory brainstem,” in: Sensory Abilities of Cetaceans. Laboratory and Field Evidence, J. A. Thomas and R. A. Kastelein (eds.), Plenum, New York (1990), pp. 181–193 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 92, No. 1, pp. 73–83, January, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.V., Supin, A.Y. Analysis of auditory information in the brains of cetaceans. Neurosci Behav Physiol 37, 285–291 (2007). https://doi.org/10.1007/s11055-007-0013-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0013-8

Key words

Navigation