Skip to main content
Log in

Extracellular citrulline levels in the nucleus accumbens during the acquisition and extinction of a classical conditioned reflex with pain reinforcement

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies on Sprague-Dawley rats using in vivo microdialysis and HPLC showed that the acquisition and performance of a classical conditioned reflex with pain reinforcement was accompanied by increases in the concentrations of citrulline (a side product of nitric oxide formation) and arginine (the substrate of NO synthase) in the intercellular space of the nucleus accumbens. During extinction of the reflex, there was a decrease in the elevation of extracellular citrulline in this brain structure, which correlated with the extent of extinction of the reflex. Recovery of the reflex led to increases in arginine and citrulline levels in the nucleus accumbens. These data suggest that there is an increase in nitric oxide production in the nucleus accumbens during the acquisition and performance of a classical conditioned reflex with pain reinforcement, which decreases as the reflex is extinguished and recovers with recovery of the reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Savel’ev, N. S. Repkina, and N. B. Saul’skaya, “A sensitive method for estimating citrulline for in vitro monitoring of nitric oxide production in the CNS,” Ros. Fiziol. Zh., 91, No. 5, 587–591 (2005).

    CAS  Google Scholar 

  2. N. B. Saul’skaya, N. A. Solov’eva, and S. A. Savel’ev, “Glutamate release in the nucleus accumbens in conditions of competitive presentation of defensive and food-related stimuli,” Zh. Vyssh. Nerv. Deyat., 55, No. 1, 71–77 (2005).

    CAS  Google Scholar 

  3. G. P. Ahen, V. A. Klyachko, and M. B. Jackson, “cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO,” Trends Neurosci., 25, No. 10, 510–517 (2002).

    Article  Google Scholar 

  4. G. Bernardi, A. Reiner, R. Massa, M. Morello, G. Sancesario, P. Giacomini, and S. Shoen, “Nitrergic neurons make synapses on dual-input dendritic spines of neurons in the cerebral cortex and the striatum of the rat: implication for the postsynaptic action of nitric oxide,” Neurosci., 99, No. 4, 627–642 (2000).

    Article  Google Scholar 

  5. T. C. Bernabeu, M. L. Stein, I. Izquierdo, and J. H. Nedina, “Role of hippocampal NO in the acquisition and consolidation of inhibitory avoidance learning,” Neuroreport, 7, 585–588 (1995).

    Article  Google Scholar 

  6. D. Blum-Degen, T. Heinemann, J. Lan, V. Pedersen, F. Leghuber, W. Paulus, P. Rieder, and M. Gerlach, “Characterization and regional distribution of nitric oxide synthase in the human brain during normal ageing,” Brain Res., 834, No. 1, 128–135 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. C. L. M. Bon and J. Garthwaite, “On the role of nitric oxide in hippocampal long-term potentiation,” J. Neurosci., 23, No. 2, 1941–1948 (2003).

    PubMed  CAS  Google Scholar 

  8. M. Carlberg, “Assay of neuronal nitric oxide synthase by HPLC determination of citrulline,” J. Neurosci. Meth., 52, 165–167 (1994).

    Article  CAS  Google Scholar 

  9. D. Centoze, P. Gubellini, G. Bernardi, and P. Calabresi, “Permissive role of interneurons in corticostriatal plasticity,” Brain Res. Rev., 31, 1–5 (1999).

    Article  Google Scholar 

  10. M. Cossenza and R. P. de Carvalho, “L-arginine uptake and release by cultured avian retinal cells,” J. Neurosci., 74, No. 5, 1885–1894 (2000).

    CAS  Google Scholar 

  11. K. Q. Do, G. Grima, B. Benz, and R. E. Salt, “Glial-neuronal transfer of arginine and S-nitrosothiols in nitric oxide transmission, ” Ann. N.Y. Acad. Sci., 962, No. 1, 81–92 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. J. Garthwaite and C. L. Boulton, “Nitric oxide signaling in the central nervous system,” Ann. Rev. Physiol., 57, 683–706 (1995).

    Article  CAS  Google Scholar 

  13. M. Z. Goren, F. Aricioglu-Kartal, T. Yurdun, and I. T. Uzbay, “Investigation of extracellular L-citrulline concentration in the striatum during alcohol withdrawal in rats,” Neurochem. Res., 26, No. 12, 1327–1333 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. G. Grima, B. Benz, and K. Q. Do, “Glutamate induced release of nitric oxide precursor, arginine, from glial cells,” Eur. J. Neurosci., 248, 2258–2265 (1997).

    Google Scholar 

  15. G. Grima, M. Cuenod, S. Pfeiffer, B. Mayer, and K. Q. Do, “Arginine availability controls the N-methyl-D-aspartate-induced nitric oxide synthesis: involvement of a glial-neuronal transfer,” J. Neurochem., 71, No. 5, 2139–2144 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. R. G. Knowles and S. Moncada, “Nitric oxide synthases in mammals,” J. Biochem., 298, 249–258 (1994).

    CAS  Google Scholar 

  17. M. M. Kraus and H. Prast, “Involvement of nitric oxide, cyclic GMP and phosphodiesterase 5 in excitatory amino acid and GABA release in the nucleus accumbens evoked by activation of the hippocampal fimbria,” Neurosci., 112, No. 2, 331–343 (2002).

    Article  CAS  Google Scholar 

  18. G. P. T. Martinelli, V. L. Friedrich, and G. R. Holstein, “L-citrulline immunostaining identifies nitric oxide production sites within neurons,” Neurosci., 114, No. 1, 111–122 (2002).

    Article  CAS  Google Scholar 

  19. M. Milad and G. L. Quirk, “Neurons in medial prefrontal, cortex signal memory for fear extinction,” Nature, 420, 70–74 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. P. O’Donnell, “Ensemble coding in the nucleus accumbens,” Psychobiology, 27, No. 2, 187–197 (1999).

    Google Scholar 

  21. K. Ohta, K. Shimazu, S. Komatsumoto, N. Araki, M. Shibita, and Y. Fukuuchi, “Modification of striatal arginine and citrulline metabolism by nitric synthase inhibitor,” Neurochemistry, 5, 766–768 (1994).

    CAS  Google Scholar 

  22. B. A. Pasqualotto, B. T. Hope, and S. R. Vincent, “Citrulline in the rat brain: immunohistochemistry and coexistence with NADPH-diaphorase,” Neurosci. Lett., 128, No. 2, 155–160 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. R. G. Phillips and J. E. Le Douxe, “Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning,” Behav. Neurosci., 106, 274–285 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. N. Saulskaya and C. A. Marsden, “Extracellular glutamate in the rat nucleus accumbens during a conditioned emotional response in the rat,” Brain Res., 698, No. 1, 114–120 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. N. Saulskaya and C. A. Marsden, “Conditioned dopamine release: dependence upon N-methyl-D-aspartate receptors,” Neurosci., 67, No. 1, 57–63 (1995).

    Article  CAS  Google Scholar 

  26. N. B. Saulskaya and M. O. Mikhailova, “Feeding-induced decrease in extracellular glutamate level in the rat nucleus accumbens: dependence on glutamate uptake,” Neurosci., 112, No. 4, 791–801 (2002).

    Article  CAS  Google Scholar 

  27. N. B. Saulskaya and N. A. Soloviova, “Tetrodotoxin-dependent glutamate release in the rat nucleus accumbens during concurrent presentation of appetitive and conditioned aversive stimuli,” J. Neurosci. Meth., 140, No. 1–2, 15–21 (2004).

    Article  CAS  Google Scholar 

  28. J. Strosznajder, M. Chalimoniuk, M. Samochocki, and R. Gadamski, “Nitric oxide: a potent mediator of glutamatergic neurotoxicity in brain ischemia,” Ann. N.Y. Acad. Sci., 723, 429–432 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. S. R. Vincent, “Nitric oxide: a radical neurotransmitter in the central nervous system,” Prog. Neurobiol., 42, 129–160 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. H. Wiesinger, “Arginine metabolism and synthesis of nitric oxide in the nervous system,” Prog. Neurobiol., 64, 365–391 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 56, No. 1, pp. 86–94, January–February, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savel’ev, S.A., Saul’skaya, N.B. Extracellular citrulline levels in the nucleus accumbens during the acquisition and extinction of a classical conditioned reflex with pain reinforcement. Neurosci Behav Physiol 37, 249–256 (2007). https://doi.org/10.1007/s11055-007-0008-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0008-5

Key words

Navigation