Skip to main content
Log in

A possible mechanism for the effect of modifiable lateral inhibition in the striatum on the selection of conditioned reflex motor responses

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

A mechanism is proposed for the effects of striatal dopamine-modifiable lateral inhibition on the selection of conditioned reflex motor responses. According to this mechanism, activation of dopamine D1 (D2) receptors on strionigral (striopallidal) neurons facilitates long-term depression (potentiation) of the inhibitory inputs simultaneously with potentiation (depression) of the excitatory inputs, of sufficient strength to open NMDA channels. For “ weak” excitation, insufficient to open NMDA channels, the modification rules were of the opposite sign. Activation of presynaptic D2 (D1) receptors leads to decreases (increases) in GABA release from strionigral (striopallidal) axon terminals innervating strionigral (striopallidal) cells. As a result, dopamine-modifiable lateral inhibition simultaneously increases both the potentiation (depression) of the excitatory inputs to “strongly” activated strionigral (striopallidal) neurons, increasing (decreasing) their activity, and increases the depression (potentiation) of the excitatory inputs to the “weakly” activated strionigral (striopallidal) neurons, decreasing (increasing) their activity. Subsequent reorganization of neuron activity in the cortex-basal ganglia-thalamus-cortex circuit facilitates selection of conditioned reflex motor responses by further increasing (decreasing) the activity of those motor cortex neurons which were “strongly” (“weakly”) excited by the striatum in conditions of dopamine release in response to the conditioned stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Varshavskaya, O. N. Ivanova, and A. F. Yakimovskii, “Motor behavior of rats in conditions of separate and combined administration of GABAergic preparations into the neostriatum,” Ros. Fiziol. Zh., 88, No. 10, 1317–1323 (2002).

    Google Scholar 

  2. I. G. Sil’kis, “A unified mechanism for plasticity in the striatum, neocortex, hippocampus, and cerebellum,” Ros. Fiziol. Zh., 86, No. 5, 519–531 (2000).

    CAS  Google Scholar 

  3. I. G. Sil’kis, “A unified postsynaptic mechanism for the effects of various neuromodulators on the modification of the excitatory and inhibitory inputs to hippocampal neurons (a hypothesis),” Usp. Fiziol. Nauk., 33, No. 1, 40–56 (2002).

    PubMed  CAS  Google Scholar 

  4. I. G. Sil’kis, “A possible mechanism of the modulatory effect of opioids and substance P on the transmission of cortical signals via the striatum,” Usp. Fiziol. Nauk., 34, No. 4, 54–64 (2003).

    PubMed  CAS  Google Scholar 

  5. I. G. Sil’kis, “Possible mechanisms of the reorganization of the discharge patterns of neurons in the output nuclei of the basal ganglia,” Ros. Fiziol. Zh., 90, No. 3, 282–293 (2004).

    CAS  Google Scholar 

  6. I. G. Sil’kis, “Possible mechanisms of the effects of endogenous neuromodulators on interrelated activity of neurons in several nuclei in the basal ganglia,” Ros. Fiziol. Zh., 90, No. 4, 409–419 (2004).

    CAS  Google Scholar 

  7. I. G. Sil’kis, “A possible mechanism of the involvement of dopaminergic cells and cholinergic interneurons in the striatum in the conditioned reflex selection of motor activity,” Zh. Vyssh. Nerv. Deyat., 54, No. 6, 734–749 (2004).

    CAS  Google Scholar 

  8. I. F. Suvorov, N. L. Voilokova, A. I. Gorbachevskaya, Yu. M. Dryagin, and O. G. Chivileva, “Involvement of the glutamatergic and dopaminergic systems of the neostriatum in organizing food-related reflexes,” Fiziol. Zh. SSSR, 76, No. 11, 1509–1520 (1990).

    PubMed  CAS  Google Scholar 

  9. B. F. Tolkunov, K. B. Shapovalova, and S. V. Afanas’ev, “Structural-functional organization of the neostriatum and its role in forming behavior,” Zh. Vyssh. Nerv. Deyat., 40, No. 6, 1027–1038 (1990).

    CAS  Google Scholar 

  10. K. B. Shapovalova, “Activation of the cholinergic system of the striatum improves attention to conditioned reflex stimuli,” Ros. Fiziol. Zh., 84, No. 7, 589–602 (1998).

    CAS  Google Scholar 

  11. V. T. Shuvaev and N. F. Suvorov, The Basal Ganglia and Behavior [in Russian], Nauka, St. Petersburg (2001).

    Google Scholar 

  12. A. F. Yakimovskii, “Monoclonic hyperkinesias evoked by repeated administration of picrotoxin into the rat striatum,” Byull. Éksperim. Biol. Med., 115, No. 1, 7–9 (1993).

    Google Scholar 

  13. A. F. Yakimovskii, “Comparison of the effects of single and chronic microinjections of GABA and picrotoxin into the caudate nucleus on conditioned reflexes in dogs,” Zh. Vyssh. Nerv. Deyat., 40, No. 3, 435–442 (1990).

    CAS  Google Scholar 

  14. A. F. Yakimovskii, “Effects of repeated administration of GABA and bicuculline into the rat neostriatum on performance of a food-procuring skill,” Zh. Vyssh. Nerv. Deyat., 46, No. 3, 521–526 (1996).

    CAS  Google Scholar 

  15. E. D. Abercrombie and P. DeBoer, “Substantia nigra Dl receptors and stimulation of striatal cholinergic interneurons by dopamine: a proposed circuit mechanism,” J. Neurosci., 17, No. 21, 8498–8505 (1997).

    PubMed  CAS  Google Scholar 

  16. G. Akiyama, H. Ikeda, S. Matsuzaki, M. Sato, S. Moribe, and N. Koshikawa, “GABA(A) receptors in the nucleus accumbens core modulate turning behavior induced by dopamine receptor stimulation,” J. Oral Sci., 45, neuron 4, 185–192 (2003).

    PubMed  CAS  Google Scholar 

  17. T. Aosaki, M. Kimura, and A. M. Graybiel, “Temporal and spatial characteristics of tonically active neurons of the primate’s striatum,” J. Neurophysiol., 73, No. 3, 1234–1252 (1995).

    PubMed  CAS  Google Scholar 

  18. N. Aronin, K. Chase, and M. DiFiglia, “Glutamic acid decarboxylase and enkephalin immunoreactive axon terminals in the rat neostriatum synapse with striatonigral neurons,” Brain Res., 365, No. 1, 151–158 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. M. D. Bevan, P. A. C. Booth, S. A. Eaton, and J. P. Bolam, “Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat,” J. Neurosci., 18, No. 22, 9438–9452 (1998).

    PubMed  CAS  Google Scholar 

  20. K. T. Blackwell, U. Czubayko, and D. Plenz, “Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro,” J. Neurosci., 23, No. 27, 9123–9132 (2003).

    PubMed  CAS  Google Scholar 

  21. E. Bracci, D. Centonze, G. Bernardi, and P. Calabresi, “Dopamine excites fast-spiking interneurons in the striatum,” J. Neurophysiol., 87, No. 4, 2190–2194 (2002).

    PubMed  CAS  Google Scholar 

  22. H. Car, M. Kuziemba-Leska, and K. Wisniewski, “The NMDA and GABA-A receptors in behavioral activity of rats,” Acta Physiol. Hung., 84, No. 3, 269–270 (1996).

    PubMed  CAS  Google Scholar 

  23. D. Centonze, C. Grande, E. Saulle, A. B. Martin, P. Gubellini, N. Pavon, A. Pisani, G. Bernardi, R. Moratella, and P. Calabresi, “Distinct roles of Dl and D5 dopamine receptors in motor activity and striatal synaptic plasticity,” J. Neurosci., 23, No. 24, 8506–8512 (2003).

    PubMed  CAS  Google Scholar 

  24. A. Charara, C. Heilman, A. I. Levey, and Y. Smith, “Pre-and post-synaptic localization of GABAB receptors in the basal ganglia in monkeys,” Neurosci., 95, No. 1, 127–140 (1999).

    Article  Google Scholar 

  25. A. J. Cooper and I. M. Standford, “Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro,” Neuropharmacol., 41, No. 1, 62–71 (2001).

    Article  CAS  Google Scholar 

  26. U. Czubayko and D. Plenz, “Fast synaptic transmission between striatal spiny projection neurons,” Proc. Natl. Acad. Sci. USA, 99, No. 24, 15764–15769 (2002).

  27. K. T. Delle Donne, S. R. Sesack, and V. M. Pickel, “Ultrastructural immunocytochemical localization of the dopamine D2 receptor within GABAergic neurons in the rat striatum,” Brain Res., 746, No. 1–2, 239–255 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. A. Delgado, A. Sierra, E. Querejeta, R. F. Valdiosera, and J. Aceves, “Inhibitory control of the GABAergic transmission in the rat neostriatum by D2 dopamine receptors,” Neurosci., 95, No. 4, 1043–1048 (2000).

    Article  CAS  Google Scholar 

  29. J. Feng, X. Cai, J. Zhao, and Z. Yan, “Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons,” J. Neurosci., 21, No. 17, 6502–6511 (2001).

    PubMed  CAS  Google Scholar 

  30. B. Floran, L. Floran, A. Sierra, and J. Aceves, “D2 receptor-mediated inhibition of GABA release by endogenous dopamine in the rat globus pallidus,” Neurosci. Lett., 237, No. 1, 1–4 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. J. Flores-Hernandez, E. Galarraga, J. C. Pineda, and J. Bargas, “Patterns of excitatory and inhibitory synaptic transmission in the rat neostriatum as revealed by 4-AP,” J. Neurophysiol., 72, No. 5, 2246–2256 (1994).

    PubMed  CAS  Google Scholar 

  32. J. Flores-Hernandez, S. Hernandez, G. L. Snyder, Z. Yan, A. A. Fienberg, S. J. Moss, P. Greengard, and D. J. Surmeier, “D(l) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade,” J. Neurophysiol., 83, No. 5, 2996–3004 (2000).

    PubMed  CAS  Google Scholar 

  33. K. Fuze, S. Ferre, M. Zoli, and L. F. Agnati, “Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine Dl receptor interactions in the basal ganglia,” Brain Res. Rev., 26, No. 2–3, 258–273 (1998).

    Google Scholar 

  34. J. L. Gaiarsa, O. Caillard, and Y. Ben-Ari, “Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance,” Trends Neurosci., 25, No. 11, 564–570 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. J. N. Guzman, A. Hernandez, E. Galarraga, D. Tapia, A. Laville, R. Vergara, J. Aceves, and J. Bargas, “Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum,” J. Neurosci., 23, No. 20, 8931–8940 (2003).

    PubMed  CAS  Google Scholar 

  36. T. Hashimoto, T. Ishii, and H. Ohmori, “Release of Ca2+ is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat,” J. Physiol., 497, No. 3, 611–627 (1996).

    PubMed  CAS  Google Scholar 

  37. C. D. Holmgren and Y. Zilberter, “Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells,” J. Neurosci., 21, No. 20, 8270–8277 (2001).

    PubMed  CAS  Google Scholar 

  38. D. Jaeger, H. Kita, and C. J. Wilson, “Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum,” J. Neurophysiol., 72, No. 5, 2555–2558 (1994).

    PubMed  CAS  Google Scholar 

  39. E. A. Jones, J. Q. Wang, D. C. Mayer, and J. F. McGinty, “The role of dorsal striatal GABA(A) receptors in dopamine agonist-induced behavior and neuropeptide gene expression,” Brain Res., 836, No. 1–2, 99–109 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Kawaguchi, “Neostriatal cell subtypes and their functional roles,” Neurosci. Res., 27, No. 1, 1–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. S. Y. Kawaguchi and T. Hirano, “Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons,” J. Neurosci., 22, No. 10, 3969–3976 (2002).

    PubMed  CAS  Google Scholar 

  42. S. B. Kombian, K. V. Ananthalakshmi, S. S. Parvathy, and W. C. Matowe, “Dopamine and adenosine mediate substance P-induced depression of evoked IPSCs in the rat nucleus accumbens in vitro,” Eur. J. Neurosci., 18, No. 2, 303–311 (2003).

    Article  PubMed  Google Scholar 

  43. T. Koos and J. M. Tepper, “Inhibitory control of neostriatal projection neurons by GABAergic interneurons,” Nat. Neurosci., 2, No. 5, 467–472 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. C. Le Moine and B. Bloch, “Dl and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of Dl and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum,” J. Comp. Neurol., 355, No. 3, 418–426 (1995).

    Article  PubMed  Google Scholar 

  45. H. A. McLean, O. Caillard, Y. Ben-Ari, and J. L. Gaiarsa, “Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus,” J. Physiol., 496, No. 2, 471–477 (1996).

    PubMed  CAS  Google Scholar 

  46. T. Momiyama, “Dopamine receptors and calcium channels regulating striatal inhibitory synaptic transmission,” Nippon Yakurigaku Zasshi, 120, No. 1, 61–63 (2002).

    Google Scholar 

  47. A. Mori and T. Shindou, “Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists,” Neurology, 61, No. 11, Supplement 6, S44–S48 (2003).

    PubMed  CAS  Google Scholar 

  48. A. Mori, T. Shindou, M. Ichimura, H. Nonaka, and H. Kase, “The role of adenosine A2A receptors in regulating GABAergic synaptic transmission in striatal medium spiny neurons,” J. Neurosci., 16, No. 2, 605–611 (1996).

    PubMed  CAS  Google Scholar 

  49. E. S. Nisenbaum, T. W. Berger, and A. A. Grace, “Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors,” Synapse, 14, No. 1, 221–242 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. M. Ouardouz and B. R. Sastry, “Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei,” J. Neurophysiol., 84, No. 3, 1414–1421 (2000).

    PubMed  CAS  Google Scholar 

  51. D. Plenz, “When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function,” Trends Neurosci., 26, No. 8, 436–443 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. D. Plenz and S. T. Kitai, “Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures,” J. Neurosci., 18, No. 1, 266–283 (1998).

    PubMed  CAS  Google Scholar 

  53. N. M. Porter, R. E. Twyman, M. D. Uhler, and R. L. Macdonald, “Cyclic AMP-dependent protein kinase decreases GABAA receptor current in mouse spinal neurons,” Neuron, 5, No. 6, 789–796 (1990).

    Article  PubMed  CAS  Google Scholar 

  54. G. Radnikow and U. Misgeld, “Dopamine Dl receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata,” J. Neurosci., 18, No. 6, 2009–2016 (1998).

    PubMed  CAS  Google Scholar 

  55. J. N. Reynolds and J. R. Wickens, “Dopamine-dependent plasticity of corticostriatal synapses,” Neural Netw., 15, No. 4–6, 507–521 (2002).

    Article  PubMed  Google Scholar 

  56. K. Z. Shen and S. W. Johnson, “Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro,” J. Physiol., 525, No. 2, 331–341 (2000).

    Article  PubMed  CAS  Google Scholar 

  57. W. Schultz, “Predictive reward signal of dopamine neurons,” J. Neurophysiol., 80, No. 1, 1–27 (1998).

    PubMed  CAS  Google Scholar 

  58. I. G. Silkis, “The unitary modification rules for neural networks with excitatory and inhibitory synaptic plasticity,” Biosystems, 48, No. 1–3, 205–213 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. I. Silkis, “Synaptic plasticity in the cortico-basal ganglia-thalamo-cortical circuit. I. Modification rules for excitatory and inhibitory synapses in the striatum,” Biosystems, 57, No. 3, 187–196 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. I. Silkis, “The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia,” Biosystems, 59, No. 1, 7–14 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. Y. Smith, M. D. Bevan, E. Shink, and J. P. Bolam, “Microcircuitry of the direct and indirect pathways of the basal ganglia,” Neurosci., 86, No. 2, 353–387 (1998).

    Article  CAS  Google Scholar 

  62. A. D. Smith and J. P. Bolam, “The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones,” Trends Neurosci., 13, No. 7, 250–265 (1990).

    Google Scholar 

  63. Y. Smith and J. Z. Kieval, “Anatomy of the dopamine system in the basal ganglia,” Trends Neurosci., 23, No. 10, Supplement, S28–S33 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. A. Stelzer, N. T. Slater, and G. ten Bruggencate, “Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy,” Nature, 326, No. 6114, 698–701 (1987).

    Article  PubMed  CAS  Google Scholar 

  65. S. Taverna, Y. C. Van Dongen, H. J. Groenewegen, and C. M. Pennartz, “Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ,” J. Neurophysiol., 91, No. 3, 1111–1121 (2004).

    Article  PubMed  Google Scholar 

  66. M. J. Tunstall, D. E. Oorschot, A. Kean, and J. R. Wickens, “Inhibitory interactions between spiny projection neurons in the rat striatum,” J. Neurophysiol., 88, No. 3, 1263–1269 (2002).

    PubMed  Google Scholar 

  67. J. H. Wang and A. Stelzer, “Shared calcium signalling pathways in the induction of long-term potentiation and synaptic disinhibition in CA1 pyramidal cell dendrites,” J. Neurophysiol., 75, No. 4, 1687–1702 (1996).

    PubMed  CAS  Google Scholar 

  68. J. R. Wickens and C. J. Wilson, “Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo,” J. Neurophysiol., 79, No. 5, 2358–2364 (1998).

    PubMed  CAS  Google Scholar 

  69. L. S. Wong, G. Eshel, J. Dreher, J. Ong, and D. M. Jackson, “Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens,” Pharmacol. Biochem. Behav., 38, No. 4, 829–835 (1991).

    Article  PubMed  CAS  Google Scholar 

  70. M. A. Woodin, K. Ganguly, and M. Poo, “Coincident pre-and post-synaptic activity modifies GABAergic synapses by postsynaptic changes in Cl transporter activity,” Neuron, 39, No. 6, 807–820 (2003).

    Article  PubMed  CAS  Google Scholar 

  71. Z. Xie, S. Yip, W. Morashita, and B. R. Sastry, “Tetanus-induced potentiation of inhibitory postsynaptic potentials in hippocampal CA1 neurons,” Can. J. Physiol. Pharmacol., 73, No. 12, 1706–1713 (1995).

    PubMed  CAS  Google Scholar 

  72. K. Yamada and T. Akasu, “Substance P suppresses GABAA receptor function via protein kinase C in primary sensory neurones of bullfrogs,” J. Physiol. (England), 496, 439–449 (1996).

    CAS  Google Scholar 

  73. K. K. Yung and J. P. Bolam, “Localization of dopamine Dl and D2 receptors in the rat neostriatum: synaptic interaction with glutamate-and GABA-containing axonal terminals,” Synapse, 38, No. 4, 413–420 (2000).

    Article  PubMed  CAS  Google Scholar 

  74. K. K. Yung, J. P. Bolam, A. D. Smith, S. M. Hersch, B. J. Ciliax, and A. I. Levey, “Immunocytochemical localization of Dl and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy,” Neurosci., 65, No. 3, 709–730 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 55, No. 4, pp. 444–458, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil’kis, I.G. A possible mechanism for the effect of modifiable lateral inhibition in the striatum on the selection of conditioned reflex motor responses. Neurosci Behav Physiol 36, 631–643 (2006). https://doi.org/10.1007/s11055-006-0068-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0068-y

Key words

Navigation