Skip to main content
Log in

Vestibular Influences on Postural Instability Induced by Movements of the Visual Environment and Support

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Subjects were maintained in a vertical posture standing on a hard support with a limited degree of freedom in the frontal plane. The stability of the vertical posture was assessed on the basis of the standard deviations (σ) from the mean amplitude of head oscillations (in the frontal and sagittal planes) relative to the origin of the coordinate system. Sinusoidal rotations of the optokinetic cylinder in which subjects stood, sinusoidal rotations of the support, and combination of these rotations, with phase discordance between movements of the cylinder and the support, led to increases in σ in all subjects. Feedback via the vestibular input was created using transmastoid galvanic vestibular stimulation. Changes in the feedback current showed a linear function relating to the amplitude and speed of head movement. Introduction of variations in the feedback function could be used to decrease σ for lateral oscillations; increases (compared with values on calm standing in the dark) resulted from the use of any of the destabilizing treatments. Changes in σ for oscillations in the sagittal plane were not systematic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. A. Al'tman, V. S. Gurfinkel', O. V. Varyagina, and Yu. S. Levik, “Effects of a moving sound source on postural responses and the head rotation illusion in humans,” Ros. Fiziol. Zh. im. I. M. Sechenova, 89, No. 6, 756–761 (2003).

    Google Scholar 

  2. V. S. Gurfinkel' and Yu. S. Levik, “The concept of body scheme and motor control,” in: Intellectual Processes and Their Simulation, Nauka, Moscow (1991), pp. 59–105.

    Google Scholar 

  3. V. M. Gusev, I. V. Orlov, and S. G. Dolgobrodov, “Sensory conflict, evoked by optokinetic stimulation: theoretical analysis based on experimental data,” Sensor. Sistemy, 16, No. 2, 145–154 (2002).

    Google Scholar 

  4. I. V. Orlov, “Galvanic stimulation of the vestibular input as a method for studying the vestibular system: mechanisms, approaches, and results,” Sensor. Sistemy, 16, No. 4, 259–267 (2002).

    Google Scholar 

  5. I. V. Orlov, V. M. Gusev, S. G. Dolgobrodov, and V. S. Shuplyakov, “The possibility of correcting vertical posture in humans using biological feedback,” Sensor. Sistemy, 17, No. 1, 1–10 (2003).

    Google Scholar 

  6. I. V. Orlov, S. G. Dolgobrodov, and V. S. Shuplyakov, “Effects of biological feedback on the ability of humans to maintain local verticals,” in: Proceedings of the Thirtieth All-Russia Congress on Questions of Higher Nervous Activity [in Russian], St. Petersburg (2000), pp. 278–281.

  7. K. E. Popov, B. N. Smetanin, V. S. Gurfinkel', M. P. Kudinova, and V. Yu. Shlykov, “Spatial perception and vestibulomotor reactions in humans,” Neirofiziologiya, 18, No. 6, 779–787 (1986).

    CAS  Google Scholar 

  8. B. N. Smetanin, K. E. Popov, and V. Yu. Shlykov, “Relationship between changes in vestibular postural reactions and the information content of visual feedback,” Neirofiziologiya, 22, No. 1, 80–87 (1990).

    CAS  Google Scholar 

  9. L. R. Bent, B. J. Macfadyen, and J. T. Inglis, “Visual-vestibular interactions in postural control during the execution of a dynamic task,” Exptl. Brain Res., 146, No. 4, 490–500 (1990).

    Google Scholar 

  10. F. O. Black, C. Wall, and L. M. Nasher, “Effects of visual and support surface orientation reference upon postural control in vestibular deficient subjects,” Acta Otolaryngol. (Stockholm), 95, No. 1, 199–201 (1983).

    CAS  Google Scholar 

  11. T. C. Britton, B. L. Day, P. Brown, J. C. Rothwell, P. D. Thompson, and C. D. Marsden, “Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man,” Exptl. Brain Res., 94, No. 1, 143–151 (1993).

    CAS  Google Scholar 

  12. J. H. Courion, W. Precht, and D. W. Sirkin, “Vestibular nerve and nuclei unit responses and eye movement responses to repetitive galvanic stimulation of the labyrinth in the rat,” Exptl. Brain Res., 66, No. 1, 41–48 (1987).

    Google Scholar 

  13. R. Creath, T. Kiemel, F. Horak, and J. J. Jeka, “Limited control strategies with the loss of vestibular function,” Exptl. Brain Res., 145, No. 3, 323–333 (2002).

    Google Scholar 

  14. B. L. Day and C. Bonato, “Modification of the galvanic sway response by visual conditions,” in: Multisensory Control of Posture, Plenum Press, New York (1995), pp. 169–172.

    Google Scholar 

  15. B. L. Day and J. Cole, “Vestibular-evoked postural responses in the absence of somatosensory information,” Brain, 125, No. 9, 2081–1088 (2002).

    Article  PubMed  Google Scholar 

  16. A. A. J. van Egmond, J. J. Groen, and L. B. W. Jongkees, “The mechanics of the semicircular canal,” J. Physiol., 110, No. 1, 1–17 (1949).

    Google Scholar 

  17. R. Could. Fitzpatrick, D. Burke, and S. C. Gandevia, “Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans,” J. Physiol., 478, 363–372 (1994).

    Google Scholar 

  18. R. C. Fitzpatrick, J. Marsden, S. R. Lord, and B. L. Day, “Galvanic vestibular stimulation evokes sensations of body rotation,” NeuroReport, 13, No. 18, 2379–2383 (2002).

    PubMed  Google Scholar 

  19. J. M. Goldberg, C. E. Smith, and C. Fernandez, “Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey,” J. Neurophysiol., 51, No. 1, 1236–1256 (1984).

    CAS  PubMed  Google Scholar 

  20. F. Hlavacka, T. Mergner, and M. Krizkova, “Control of body vertical by vestibular and proprioceptive inputs,” Brain Res. Bull., 40, 431–435 (1996).

    CAS  PubMed  Google Scholar 

  21. J. Jeka, K. S. Oie, and T. Kiemel, “Multisensory information for human postural control: integrating touch and vision,” Exptl. Brain Res., 134, No. 1, 107–125 (2000).

    CAS  Google Scholar 

  22. R. Johansson and M. Magnusson, “Lateral posture stability during galvanic stimulation,” Acta Otolaryngol. (Stockholm), 481,Suppl., 585–588 (1991).

    CAS  Google Scholar 

  23. R. Johansson, M. Magnusson, and P. A. Fransson, “Galvanic vestibular stimulation for analysis of postural adaptation and stability,” IEEE Trans. Biomed. Eng., 42, 282–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. H. O. Karnath, E. Reich, C. Rorden, M. Fetter, and J. Driver, “The perception of body orientation after neck-proprioceptive stimulation. Effects of time and of visual cueing,” Exptl. Brain Res., 143, No. 3, 350–358 (2002).

    Google Scholar 

  25. O. Lowenstein, “The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth of the thornback ray (Raja clavata),” J. Physiol., 127, No. 1, 104–117 (1955).

    CAS  PubMed  Google Scholar 

  26. M. Magnusson, R. Johansson, and J. Wiklund, “Galvanically induced body sway in the anterior-posterior plane,” Acta Otolaryngol. (Stockholm), 110, No. 1, 11–17 (1990).

    CAS  Google Scholar 

  27. T. Mergner and T. Rosemeier, “Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions — a conceptual model,” Brain Res. Rev., 28, No. 1–2, 118–135 (1998).

    CAS  PubMed  Google Scholar 

  28. L. B. Minor and J. M. Goldberg, “Vestibular-nerve inputs to the vestibulo-ocular reflex: a functional ablation study in the squirrel monkey,” Neurosci., 11, 1636–1648 (1991).

    CAS  Google Scholar 

  29. A. E. Pavlik, J. T. Inglis, M. Lauk, L. Oddsson, and J. J. Collins, “The effects of stochastic galvanic vestibular stimulation on human postural sway,” Exptl. Brain Res., 124, 273–280 (1999).

    CAS  Google Scholar 

  30. R. J. Peterka, “Sensorimotor integration in human postural control,” J. Neurophysiol., 88, No. 3, 1097–1118 (2002).

    CAS  PubMed  Google Scholar 

  31. K. E. Popov, G. V. Kozhina, B. N. Smetanin, and V. Y. Shlikov, “Postural responses to combined vestibular and hip proprioceptive stimulation in man,” Eur. J. Neurosci., 11, No. 9, 3307–3311 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. O. Sasaki, S. Usami, P.-M. Gagey, J. Martinerie, M. Le Van Quyen, and P. Arranz, “Role of visual input in nonlinear postural control system,” Exptl. Brain Res., 147, No. 1, 1–7 (2002).

    Google Scholar 

  33. D. L. Wardman, B. L. Day, and R. C. Fitzpatrick, “Position and velocity responses to galvanic vestibular stimulation in human subjects during standing,” J. Physiol., 547, No. 1, 293–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. S. R. Watson, A. E. Brizuela, I. S. Curthoys, J. G. Colebatch, H. G. MacDougall, and G. M. Halmagyi, “Maintained ocular torsion produced by bilateral and unilateral galvanic (DC) vestibular stimulation in humans,” Exptl. Brain Res., 122, 453–458 (1998).

    CAS  Google Scholar 

  35. M. S. Welgampola and J. G. Colebatch, “Vestibulospinal reflexes: quantitative effects of sensory feedback and postural task,” Exptl. Brain Res., 139, No. 3, 345–353 (2001).

    CAS  Google Scholar 

  36. R. Zink, S. F. Bucher, A. Weiss, T. Brandt, and M. Dieterich, “Effects of galvanic vestibular stimulation on otolithic and semicircular canal eye movements and perceived vertical,” EEG Clin. Neurophysiol., 107, 200–205 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 3, pp. 246–258, March, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlov, I.V., Stolbkov, Y.K. & Shuplyakov, V.S. Vestibular Influences on Postural Instability Induced by Movements of the Visual Environment and Support. Neurosci Behav Physiol 36, 297–305 (2006). https://doi.org/10.1007/s11055-006-0016-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0016-x

Key Words

Navigation