Neurophysiological Correlates of Induced Discrete Emotions in Humans: An Individually Oriented Analysis

Abstract

Studies on 30 right-handed subjects addressed EEG characteristics (62 channels) in conditions of laboratory simulation of induced emotions of happiness, joy, anger, disgust, fear/anxiety, and sadness. Induced emotions were found to produce, along with common features, individual patterns in the distribution of amplitude-frequency EEG characteristics. Induced positive and negative discrete emotions were characterized by interhemisphere activatory asymmetry in the theta-2 (4–6 Hz), alpha-2 (10–12 Hz), and beta-1 (12–18 Hz) ranges. Experience of the emotions of joy, anger, and disgust occurred on the background of asymmetrical increases in activity in the anterior cortex of the left hemisphere in the theta-2 range, suggesting a leading role for the activity of these areas in realizing the cognitive components of emotional reacting. In addition, some high-ergicity negative emotions evoked combined alpha-2 and beta-1 desynchronization (disgust) or beta-1 desynchronization (fear/anxiety) in the right parietal-temporal cortex, suggesting its involvement in the mechanisms of non-specific emotional activation. These data provide evidence that each of these emotions is characterized by its own individual pattern in the distribution of the amplitude-frequency characteristics of the EEG and, on the other hand, that series of ranges and cortical areas show similar but different (in terms of intensity) effects in response to emotional activation for emotions of different flavor.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    L. I. Aftanas, Emotional Space in Humans: A Psychophysiological Analysis [in Russian], Siberian Division of the Russian Academy of Medical Sciences Press (2000).

  2. 2.

    L. I. Aftanas, N. V. Reva, A. A. Varlamov, S. V. Pavlov, and V. P. Makhnev, “Analysis of evoked EEG synchronization and desynchronization in emotional activation in humans: temporal and topographic characteristics,” Zh. Vyssh. Nerv. Deyat., 53, No.4, 485–494 (2003).

    CAS  Google Scholar 

  3. 3.

    Z. V. Denisova, Mechanisms of Emotional Behavior in Children [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  4. 4.

    A. M. Ivanitskii, “Information synthesis in key zones of the cortex as the basis of subjective feelings,” Zh. Vyssh. Nerv. Deyat., 47, No.2, 209–225 (1997).

    CAS  Google Scholar 

  5. 5.

    A. R. Luriya, Higher Cortical Functions in Humans and Their Disturbance in Local Brain Lesions [in Russian], Prosveshchenie, Moscow (1969).

    Google Scholar 

  6. 6.

    N. G. Mikhailova and M. I. Zaichenko, “Neurons in the right and left prefrontal areas of the rat cerebral cortex and stimulation of emotiogenic zones,” Zh. Vyssh. Nerv. Deyat., 48, No.3, 431–438 (1998).

    CAS  Google Scholar 

  7. 7.

    R. A. Pavlygina, A. V. Sulimov, and L. A. Zhavoronkova, “Interhemisphere EEG relationships in the hunger dominant (coherence analysis),” Dokl. Ros. Akad. Nauk., 338, No.6, 833–835 (1994).

    CAS  Google Scholar 

  8. 8.

    M. N. Rusalova, “Dynamics of asymmetry in human cerebral cortical activity in emotional states,” Zh. Vyssh. Nerv. Deyat., 38, No.4, 754–757 (1988).

    CAS  Google Scholar 

  9. 9.

    M. N. Rusalova and M. B. Kostyunina, “Frequency-amplitude characteristics of the left and right hemispheres during the mental reproduction of emotionally colored images,” Fiziol. Cheloveka, 25, No.5, 50–56 (1999).

    PubMed  CAS  Google Scholar 

  10. 10.

    M. N. Rusalova, M. B. Kostyunina, and M. A. Kulikov, “Spatial distribution of the coefficients of asymmetry of brain bioelectrical activity during the feeling of negative emotions,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No.3, 318–323 (2002).

    CAS  Google Scholar 

  11. 11.

    P. V. Simonov, The Emotional Brain, [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  12. 12.

    V. B. Strelets, N. N. Samko, and Zh. V. Gokikovva, “Physiological measures of pre-examination stress,” Zh. Vyssh. Nerv. Deyat., 48, No.3, 458–463 (1998).

    CAS  Google Scholar 

  13. 13.

    K. V. Sudakov, “Mechanisms of resistance to emotional stress: the advantages of the individual approach,” Vestn. Ross. Akad. Med. Nauk., No. 8, 8–12 (1998).

  14. 14.

    L. I. Aftanas, N. V. Lotova, V. P. Makhnev, and S. A. Popov, “Nonlinear dynamic complexity of the human EEG during evoked emotions,” Int. J. Psychophysiol., No. 28, 63–67 (1998).

    Google Scholar 

  15. 15.

    L. I. Aftanas, A. A. Varlamov, S. V. Pavlov, V. P. Makhnev, and N. V. Reva, “Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands,” Int. J. Psychophysiol., 44, No.1, 67–82 (2002).

    PubMed  Article  Google Scholar 

  16. 16.

    E. Basar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, “Gamma, alpha, delta, and theta oscillations govern cognitive processes,” Int. J. Psychophysiol., 39, No.1, 241–248 (2001).

    PubMed  CAS  Google Scholar 

  17. 17.

    J. T. Cacioppo and W. L. Gardner, “Emotion,” Ann. Rev. Psychol., 50, 191–214 (1999).

    Article  CAS  Google Scholar 

  18. 18.

    I. C. Christie and B. H. Friedman, “Autonomic specificity of discrete emotion and dimensions of affective space: a multivariate approach,” Int. J. Psychophysiol., 51, No.2, 143–153 (2004).

    PubMed  Article  Google Scholar 

  19. 19.

    A. R. Clarke, R. J. Barry, R. McCarthy, and M. Selikowitz, “EEG analysis in attention-deficit/hyperactivity disorder: a comparative study of two subtypes,” Psychiatry Res., 81, No.1, 19–29 (1998).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    J. J. Claus, V. I. Kwa, S. Teunisse, G. J. Walstra, W. A. van Gool, J. H. Koelman, L. J. Bour, and B. W. Ongerboer de Visser, “Slowing on quantitative spectral EEG is a marker for rate of subsequent cognitive and functional decline in early Alzheimer disease,” Alzheimer Dis. Assoc. Disord., 12, No.3, 167–174 (1998).

    PubMed  CAS  Google Scholar 

  21. 21.

    H. J. Crawford, S. W. Clarke, and M. Kitner-Triolo, “Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: laterality and regional EEG activity differences,” Int. J. Psychophysiol., 24, No.3, 239–266 (1996).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    R. J. Davidson, J. P. Chapman, L. J. Chapman, and J. B. Henriques, “Asymmetrical brain electrical activity discriminates between psychometrically-matched verbal and spatial cognitive tasks,” Psychophysiol., 27, No.5, 528–543 (1990).

    CAS  Google Scholar 

  23. 23.

    R. J. Davidson, “Anxiety and affective style: role of the prefrontal cortex and amygdala,” Biol. Psychiatr., 51, 68–80 (2002).

    Article  Google Scholar 

  24. 24.

    B. R. Dunn, J. A. Hartigan, and W. L. Mikulas, “Concentration and mindfulness meditations: unique forms of consciousness?” Appl. Psychophysiol. Biofeedback, 24, No.3, 147–165 (1999).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    J. J. Gross and R. W. Levenson, “Emotion elicitation using films,” Cognit. Emot., 9, 87–108 (1995).

    Article  Google Scholar 

  26. 26.

    A. Gundel and G. F. Wilson, “Topographical changes in the ongoing EEG related to the difficulty of mental tasks,” Brain Topogr., 5, 17–25 (1992).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    D. Hagemann, S. R. Waldstein, and J. F. Thayer, “Central and autonomic nervous system integration in emotion,” Brain Cogn., 52, 79–87 (2003).

    PubMed  Google Scholar 

  28. 28.

    T. C. Hankins and G. F. Wilson, “A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight,” Aviat. Space Environ. Med., 49, No.4, 360–367 (1998).

    Google Scholar 

  29. 29.

    E. Harmon-Jones and J. J. Allen, “Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence,” J. Person. Soc. Psychol., 74, No.5, 1310–1316 (1998).

    CAS  Google Scholar 

  30. 30.

    E. Harmon-Jones, J. D. Sigelman, A. Bohlig, and C. Harmon-Jones, “Anger, coping, and frontal cortical activity. The effect of coping potential on anger-induced left frontal activity,” Cogn. Emot., 17, No.1, 1–24 (2003).

    Google Scholar 

  31. 31.

    T. Harmony, T. Fernandez, and J. Silva, “EEG-delta activity: an indicator of attention to internal processing during performance of menial tasks,” Int. J. Psychophysiol., 24, No.1–2, 161–171 (1996).

    PubMed  CAS  Google Scholar 

  32. 32.

    W. Heller and J. B. Nitschke, “The puzzle of regional brain activity in depression and anxiety: the importance of subtypes and comorbidity,” Cognit. Emot., 12, No.3, 421–447 (1998).

    Google Scholar 

  33. 33.

    W. Heller, J. B. Nitschke, and D. L. Lindsay, “Neuropsychological correlates of arousal in self-reported emotion,” Cognit. Emot., 11, No.4, 383–384 (1997).

    Google Scholar 

  34. 34.

    C. E. Izard, The Psychology of Emotions, Plenum Press, New York, London (1991).

    Google Scholar 

  35. 35.

    C. E. Izard, F. E. Dougherty, B. M. Bloxom, and N. E. Kotsch, The Differential Emotion Scale: a Method of Measuring the Meaning of Subjective Experience of Discrete Emotions, Department of Psychology, Vanderbilt University, Nashville (1974).

    Google Scholar 

  36. 36.

    S. Karakas, O. U. Erzengin, and E. Basar, “A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses,” Clin. Neurophysiol., 111, 1719–1732 (2000).

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    T. W. Kjaer, C. Bertelsen, P. Piccini, D. Brooks, J. Alving, and H. C. Lou, “Increased dopamine tone during meditation-induced changes of consciousness,” Brain Res. Cogn. Brain Res., 13, No.2, 255–259 (2002).

    PubMed  CAS  Google Scholar 

  38. 38.

    W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Rev., 29, 169–195 (1999).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    R. J. Larsen and E. Diener, “Promises and problems with the circumflex model of emotion,” in: Review of Personality and Social Psychology, Sage, Newbury Park, California (1992).

    Google Scholar 

  40. 40.

    G. J. McHugo, G. A. Smith, and J. T. Lanzetta, “The structure of self-reports of emotional responses to film segments,” Motiv. Emot., 6, No.4, 365–385 (1982).

    Article  Google Scholar 

  41. 41.

    E. V. Orekhova, T. A. Stroganova, and I. N. Posikera, “Theta synchronization during sustained anticipatory attention in infants over the second half of the first year of life,” Int. J. Psychophysiol., 32, No.2, 151–172 (1999).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    K. L. Khan, T. Wager, S. F. Taylor, and I. Liberzon, “Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI,” Neuroimage, 16, 331–348 (2002).

    Google Scholar 

  43. 43.

    P. Philippot, “Inducing and assessing differentiated emotion-feeling states in laboratory,” Cogn. Emot., 7, No.2, 171–193 (1993).

    Google Scholar 

  44. 44.

    M. L. Phillips, C. Senior, T. Fahy, and S. David, “Disgust — the forgotten emotion of psychiatry,” Brit. J. Psychiat., 172, 373–375 (1998).

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    D. Schellberg, C. Besthorn, W. Pfleger, and T. Gasser, “Emotional activation and topographic EEG band power,” J. Psychophysiol., 7, 24–33 (1993).

    Google Scholar 

  46. 46.

    S. A. Shankman and D. N. Klein, “The relation between depression and anxiety: an evaluation of the tripartite approach, approach-withdrawal and valence-arousal models,” Clin, Psychol. Rev., 23, 605–637 (2003).

    Google Scholar 

  47. 47.

    G. Stenberg, “Personality and the EEG: arousal and emotional arousability,” Person. Individ. Differ., 13, No.10, 1097–1113 (1992).

    Google Scholar 

  48. 48.

    K. Umeno, E. Hori, E. Tabuchi, H. Takahura, K. Miyamoto, T. Ono, and H. Nishijo, “Gamma-band EEGs predict autonomic responses during mental arithmetic,” Neuroreport, 14, No.3, 477–480 (2003).

    PubMed  Google Scholar 

  49. 49.

    P. Welgan, H. Meshkinpour, and L. Ma, “Role of anger in antral motor activity in irritable bowel syndrome,” Dig. Dis. Sci., 45, No.2, 248–251 (2000).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No. 12, pp. 1457–1471, December, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aftanas, L.I., Reva, N.V., Savotina, L.N. et al. Neurophysiological Correlates of Induced Discrete Emotions in Humans: An Individually Oriented Analysis. Neurosci Behav Physiol 36, 119–130 (2006). https://doi.org/10.1007/s11055-005-0170-6

Download citation

Key words

  • EEG
  • discrete emotion
  • theta-2
  • alpha-2
  • and beta-1 ranges
  • interhemisphere activatory asymmetry