Skip to main content
Log in

Organization of Frontohippocampal Neuronal Networks in Cats in Different Types of Directed Behavior

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Food-related operant conditioned reflexes to light were developed in four cats on the basis of the “ active choice” of reinforcement quality: short-latency pedal presses were reinforced with a mixture of meat and bread, while long-latency presses were reinforced with meat. Animals showed differences in their behavioral strategies: two preferred long-latency pedal presses (animals with “self-control”), while the other two preferred short-latency pedal presses (“impulsive” animals). At the second stage of the study, animals of both groups were retrained to a short-delay (1 sec) conditioned operant food-related reflex in response to light with meat reinforcement. Chronically implanted Nichrome semimicroelectrodes were used to record multicellular activity in the frontal cortex and hippocampus (field CA3). The interaction of neighboring neurons within the frontal cortex and hippocampus (local neural networks) and neurons of the frontal cortex and hippocampus (distributed frontohippocampal and hippocampofrontal neural networks) were assessed by statistical cross-correlation analysis of spike trains with an analysis epoch of 100 msec. The frontal and frontohippocampal neural networks had different modes of functional organization in the simplified task for the animals of the two groups. However, intergroup differences in local networks of the hippocampus persisted in conditions of the simplified task lacking the requirement for the animals to select the quality of the reinforcement, indicating the likely genetic determinacy of these networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. V. Bukh-Viner, I. V. Volkov, and G. Kh. Merzhanova, “Spike collector,” Zh. Vyssh. Nerv. Deyat., 40, No.6, 1194–1199 (1990).

    CAS  Google Scholar 

  2. A. I. Venchikov and V. A. Venchikov, Basic Approaches to the Statistical Processing of Study Results in Physiology [in Russian], Meditsina, Moscow (1974).

    Google Scholar 

  3. G. Kh. Merzhanova, “Local and distributed neural networks and individuality,” Ros. Fiziol. Zh. im. I. M. Sechenova, 87, No.6, 873–884 (2001).

    Google Scholar 

  4. G. Kh. Merzhanova and A. I. Berg, “Selection of reinforcement quality depending on the duration of the delay in operant reactions in cats,” Zh. Vyssh. Nerv. Deyat., 41, No.5, 948–954 (1991).

    CAS  Google Scholar 

  5. G. Kh. Merzhanova and E. E. Dolbakyan, “Interneuronal frontoamygdalar interactions in cats trained to select reinforcement quality,” Zh. Vyssh. Nerv. Deyat., 48, No.3, 410–421 (1998).

    Google Scholar 

  6. G. Kh. Merzhanova, E. E. Dolbakyan, and A. Z. Partev, “Interneuronal relationships in the basolateral amygdala in cats trained to select the quality of food reinforcement,” Zh. Vyssh. Nerv. Deyat., 47, No.3, 500–506 (1997).

    Google Scholar 

  7. G. Kh. Merzhanova, E. E. Dolbakyan, and V. N. Khokhlova, “Interneuronal frontohippocampal interactions in cats trained to select the quality of reinforcement,” Zh. Vyssh. Nerv. Deyat., 52, No.3, 290–298 (2003).

    Google Scholar 

  8. M. Mishkin and T. Eppentseller, “The anatomy of memory”, V Mire Nauki (Russian translation of Scientific American), Mir, Moscow (1987), Vol. 8, No.1, pp. 30–40.

    Google Scholar 

  9. V. V. Nalimov, The Use of Mathematical Statistics in the Analysis of Substances [in Russian], State Physics-Mathematical Literature Press, Moscow (1960).

    Google Scholar 

  10. P. V. Simonov, The Emotional Brain [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  11. P. V. Simonov, The Motivated Brain [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  12. P. V. Simonov, Lectures on the Operation of the Brain [in Russian], Institute of Psychology, Russian Academy of Sciences, Moscow (1998).

    Google Scholar 

  13. M. G. Baxter, A. Parker, C. C. Lindner, A. D. Izquierdo, and E. A. Murray, “Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex,” J. Neurosci., 20, No.11, 4311–4319 (2000).

    CAS  PubMed  Google Scholar 

  14. L. L. Baylis and G. Gaffan, “Amygdalectomy and ventromedial pre-frontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward,” Exptl. Brain Res., 86, No.3, 617–622 (1991).

    CAS  Google Scholar 

  15. A. Bechara, H. Damasio, D. Tranel, and S. W. Anderson, “Dissociation of working memory from decision making within the human prefrontal cortex,” J. Neurosci., 18, No.1, 428–437 (1998).

    CAS  PubMed  Google Scholar 

  16. R. Dias, T. W. Robbins, and A. C. Roberts, “Dissociation in pre-frontal cortex of affective and attentional shifts,” Nature, 380, No.6569, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. A. Escobar, “Nuevos conceptos sobre la significacion morfofunctional del sistema limbico,” Bol. Estud. Med. Biol., 34, No.1, 25–34 (1986).

    CAS  PubMed  Google Scholar 

  18. J. E. Jarard, “On the role of the hippocampus in learning and memory in the rat,” Behav. Neural. Biol., 60, No.1, 9–26 (1993).

    Article  PubMed  Google Scholar 

  19. L. E. Jarrard, “What does the hippocampus really do?” Behav. Brain Res., 71, No.1, 1–10 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. M. B. Moser and E. J. Moser, “Distributed encoding and retrieval of spatial memory in the hippocampus, ” J. Neurosci., 18, No.15, 7535–7542 (1998).

    CAS  PubMed  Google Scholar 

  21. V. J. O’Boyle, E. A. Murray, and M. Mishkin, “Effects of excitotoxic amygdala-hippocampal lesions on visual recognition in Rhesus monkeys,” Soc. Neurosci. Abstr., 19, 438 (1993).

    Google Scholar 

  22. W. E. Pratt and S. J. Mitzumori, “Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward,” Behav. Neurosci., 112, No.3, 554–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. J. Rawing, “Associations across time: the hippocampus as a temporary memory store,” Behav. Brain Sci., 3, No.3, 479–496 (1985).

    Google Scholar 

  24. F. Reinoso-Suarez, Topographischer Hirnatlas der Katze (Fur Experimental-Physiologische Untersuchungen), Herausgegeben von E. Merck AG, Darmstadt, (1961).

    Google Scholar 

  25. R. D. Rogers, A. M. Owen, H. C. Middleton, E. J. Williams, J. D. Pickard, B. J. Sahakian, and T. W. Robbins, “Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex,” J. Neurosci., 20, No.19 9029–9038 (1999).

    Google Scholar 

  26. E. T. Rolls, “The orbito-frontal cortex,” Phil. Trans. Roy. Soc. Lond. B. Biol. Sci., 351, 1433–1444 (1996).

    CAS  Google Scholar 

  27. E. T. Rolls, H. D. Critchley, R. Mason, and E. A. Wilson, “Orbito-frontal cortex neurons: role in olfactory and visual association learning,” J. Neurophysiol., 75, 1970–1981 (1996).

    CAS  PubMed  Google Scholar 

  28. E. T. Rolls, A. Treves, R. G. Robertson, P. Georges-Francois, and S. Panzeri, “Information about spatial view in an ensemble of primate hippocampal cells,” J. Neurophysiol., 79, No.4, 1797–1813 (1998).

    CAS  PubMed  Google Scholar 

  29. Y. Sakurai, “Population coding by cell assemblies-what it really is in the brain,” Neurosci. Res., 26, No.1, 1–16 (1996).

    CAS  PubMed  Google Scholar 

  30. G. Schoenbaum, A. A. Chiba, and M. Gallagher, “Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning,” Nat. Neurosci., 1, No.2, 155–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. G. Schoenbaum, A. A. Chiba, and M. Gallagher, “Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning,” J. Neurosci., 19, No.5, 1876–1884 (1999).

    CAS  PubMed  Google Scholar 

  32. N. Stolar, S. Sparenborg, E. Donchin, and M. Gabriel, “Conditional stimulus probability and activity of hippocampus, cingulate cortical and limbic thalamus neurons during avoidance conditioning in rabbits,” J. Behav. Neurosci., 103, No.5, 919–934 (1989).

    Article  CAS  Google Scholar 

  33. R. Sutherland and R. McDonald, “Hippocampus, amygdala and memory deficits in rats,” Behav. Brain Res., 37, No.1, 57–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. L. Tremblay and W. Schultz, “Relative rewards preference in primate orbitofrontal cortex,” Nature, 398, 704–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. M. Watanabe, “Reward expectancy in primate prefrontal neurons,” Nature, 382, No.6592, 629–632 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti, Vol. 54, No. 4, pp. 508–518, July–August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzhanova, G.K., Dolbakyan, E.E. & Khokhlova, V.N. Organization of Frontohippocampal Neuronal Networks in Cats in Different Types of Directed Behavior. Neurosci Behav Physiol 35, 667–676 (2005). https://doi.org/10.1007/s11055-005-0109-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0109-y

Key Words

Navigation