Skip to main content
Log in

Changes in Serotonin Metabolism in the Rat Brain on Presentation of a Habituated Stimulus

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The levels of serotonin and the serotonin metabolite 5-hydroxyindoleacetic acid, monoamine oxidase activity, and the kinetic parameters of the oxidative deamination of serotonin were studied in various brain structures in rats after repeated presentation of a contextual stimulus. These experiments showed that presentation of the habituated stimulus was accompanied by increases in serotonin metabolism and the active transport of its metabolite in the amygdaloid complex, striatum, and midbrain, with no significant changes in the hippocampus or prefrontal cortex. Increases in monoamine oxidase activity in various brain areas resulted from different catalytic mechanisms: an increase in the rate of formation of the enzyme-substrate complex (a decrease in the Michaelis constant) in the amygdaloid complex, and faster conversion of the enzyme-substrate complex (increases in the maximum reaction rate) in the striatum and midbrain. It is concluded that activation of the presynaptic mechanism of serotonin transmission in the amygdaloid complex and striatum may be involved in the process of suppressing the biological significance of and attention to a repeatedly presented stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. S. Vinogradova, “The hop and the orientational reflex,” in: Neural Mechanisms of the Orientational Reflex [in Russian], Moscow State University Press (1970), pp. 183–215.

  2. V. Z. Gorkin, Amine Oxidases and Their Importance in Medicine [in Russian], Meditsina, Moscow (1981).

    Google Scholar 

  3. E. Cornish-Bowden, Basics of Enzyme Kinetics [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  4. E. Kendall, The Cellular Basis of Behavior [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  5. L. V. Loskutova, “Latent inhibition in rats and mice in a conditioned passive avoidance reaction,” Zh. Vyssh. Nerv. Deyat., 35, No.6, 1172–1174 (1985).

    CAS  Google Scholar 

  6. E. N. Sokolov, The Neural Mechanisms of Learning and Memory [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  7. P. Hochachka and J. Somero, A Strategy of Biochemical Adaptation [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  8. G. K. Aghajanian, “Electrophysiology of serotonin receptor subtypes and signal transduction pathways, ” in: Psychopharmacology. The Fourth Generation of Progress, F. E. Bloom and D. J. Kupfer (eds.), Raven Press, New York (1995), pp. 451–461.

    Google Scholar 

  9. G. K. Aghajanian and R. Andrade, “Electrophysiology of 5-HT receptors,” in: Handbook of Experimental Pharmacology. Serotonergic Neurons and 5-HT Receptors in the CNS, H. G. Baumgarten and M. Gothert (eds.), Springer, Berlin (1997), Vol. 129, pp. 499–535.

    Google Scholar 

  10. M. H. Bagshaw, D. P. Kimble, and K. H. Pribram, “The GSR of monkeys during orienting and habituation and after ablation of the amygdala, hippocampus and inferotemporal cortex,” Neuropsychologia, 3, No.1, 111–119 (1965).

    Article  Google Scholar 

  11. L. H. Burns, L. Annett, A. E. Kelley, B. J. Everitt, and T. W. Robbins, “Effects of lesions to amygdala, ventral subiculum, medial pre-frontal cortex, and nucleus accumbens on the reaction to novelty. Implications for limbic-striatal interactions,” Behav. Neurosci., 110, No.1, 60–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. M. Carli and R. Samanin, “The 5-HT[1A] receptor agonist 8-OH-DPAT reduces rats’ accuracy of attentional performance and enhances impulsive responding in a five-choice serial reaction time task: role of presynaptic 5-HT(1A), ” Psychopharmacol., 149, No.3, 259–268 (2000).

    Article  CAS  Google Scholar 

  13. L.-L. Cheng, S.-J. Wang, and P.-W. Gean, “Serotonin depresses excitatory synaptic transmission and depolarization-induced Ca2+ influx in rat basolateral amygdala via 5-HT1A receptors,” Eur. J. Neurosci., 10, No.6, 2163–2172 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. G. Curzon and A. R. Green, “Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acids in small regions of rat brain,” Brit. J. Pharmacol., 39, No.3, 653–655 (1970).

    CAS  Google Scholar 

  15. S. A. Deadwyler and E. J. Wyers, “Disruption of habituation by caudate nuclear stimulation in the rat, ” Behav. Biol., 7, No.1, 55–64 (1972).

    CAS  PubMed  Google Scholar 

  16. S. E. File, “Effects of parachlorophenylalanine and amphetamine on habituation of exploration,” Pharmacol. Biochem. Behav., 6, No.2, 151–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  17. M. Gallagher and P. C. Hollandt, “The amygdala complex. Multiple roles in associative learning and attention,” Proc. Natl. Acad. Sci. USA, 91, No.25, 11771–11776 (1994).

    CAS  PubMed  Google Scholar 

  18. P. F. Gately, S. L. Poon, D. S. Segal, and M. A. Geyer, “Depletion of brain serotonin by 5, 7-dihydroxytryptamine alters the response to amphetamine and the habituation of locomotor activity in rats,” Psychopharmacology (Berlin), 87, No.4, 400–405 (1985).

    Article  CAS  Google Scholar 

  19. M. A. Geyer, A. Puerto, D. B. Menkes, D. S. Segal, and A. J. Mandell, “Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways,” Brain Res., 106, No.2, 257–269 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. J. A. Gray and N. McNaughton, “Comparison between the behavioral effects of septal and hippocampus lesions: A review,” Neurosci. Behav. Res., 7, No.2, 118–188 (1983).

    Google Scholar 

  21. J. P. Griffin, “Neuropsychological studies into habituation,” in: Short-Term Changes in Neural Activity and Behavior, G. Horn and R. A. Hindepp (eds.), Cambridge University Press, UK (1970), pp. 141–179.

    Google Scholar 

  22. K. Hole, G. E. Johnson, and O. G. Berge, “5, 7-Dihydroxytryptamine lesions of the ascending 5-hydroxytryptamine pathways: habituation, motor activity and agonistic behavior,” Pharmacol. Biochem. Behav., 7, No.3, 205–210 (1977).

    Article  CAS  PubMed  Google Scholar 

  23. W. P. Jordan and R. N. Leaton, “Effects of mesencephalic reticular formation lesions on habituation of startle and lick suppression responses in the rat,” J. Comp. Physiol. Psychol., 96, No.2, 170–183 (1982).

    CAS  PubMed  Google Scholar 

  24. J. F. R. Konig and R. Klippel, The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem, Williams and Wilkins Co., Baltimore (1963).

    Google Scholar 

  25. R. E. Lubow, Latent Inhibition and Conditioned Attention Theory, Cambridge University Press, Cambridge (1989).

    Google Scholar 

  26. A. Mar, E. Spreekmeester, and J. Rochford, “Antidepressants preferentially enhance habituation to novelty in the olfactory bulbectomized rat,” Psychopharmacol. (Berlin), 150, No.1, 52–60 (2000).

    Article  CAS  Google Scholar 

  27. N. H. Neff, T. N. Tozer, and B. B. Brodie, “Application of steady-state kinetics to studies of the transfer of 5-hydroxyindolacetic acid from brain to plasma,” J. Pharmacol. Exptl. Therap., 158, No.2, 214–218 (1967).

    CAS  Google Scholar 

  28. J. M. Pearce and G. Hall, “A model for Pavlovian learning: variations in the effectiveness of conditioned but not unconditioned stimuli,” Psychol. Rev., 87, No.6, 532–552 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. A. A. Spevack, C. T. Campbell, and L. Dranke, “Effect of amygdalectomy on habituation and CER in rats, ” Physiol. Behav., 15, No.2, 199–207 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. B. Srebro and S. A. Lorens, “Behavioral effects of selective midbrain raphe lesions in the rat,” Brain Res., 89, No.2, 303–325 (1975).

    Article  CAS  PubMed  Google Scholar 

  31. I. Weiner, “Neural substrates of latent inhibition: the switching model,” Psychol. Bull., 108, No.3, 442–461 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. F. A. Wilson and E. T. Rolls, “The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks,” Exptl. Brain Res., 93, No.3, 367–382 (1993).

    CAS  Google Scholar 

  33. A. G. Yeo and D. A. Oakley, “Habituation of distraction to a tone in the absence of neocortex in rats, ” Behav. Brain Res., 8, No.3, 403–409 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No.1, pp. 11–19, January, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molodtsova, G.F. Changes in Serotonin Metabolism in the Rat Brain on Presentation of a Habituated Stimulus. Neurosci Behav Physiol 35, 561–566 (2005). https://doi.org/10.1007/s11055-005-0094-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0094-1

Key Words

Navigation