A. S. Bazyan, “Interaction of transmitter and modulator systems in the brain and their possible role in the formation of psychophysiological and psychopathological states,” Usp. Fiziol. Nauk., 32, No. 3, 3–22 (2001).
Google Scholar
A. S. Bazyan, “Divergent and convergent mechanisms of the integrative activity of the mammalian brain,” Zh. Vyssh. Nerv. Deyat., 51, No. 4, 514–528 (2001).
Google Scholar
O. S. Vinogradova, “Neuroscience at the end of the second millennium: a paradigm shift,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 743–774 (2000).
Google Scholar
M. V. Kopanitsya, A. Boichuk, N. O. Lozova, and O. O. Krishtal’, “Interneuronal signaling mediated by transsynaptic diffusion of neurotransmitters,” Fiziol. Zh. (Ukr.), 45, No. 4, 143–147 (1999).
Google Scholar
A. V. Sem’yanov, “The effect of activating kainate receptors on tonic and phasic GABAergic inhibition in interneurons of field CA1 in slices of guinea-pig hippocampus,” Zh. Vyssh. Nerv. Deyat., 53, No. 2, 193–201 (2003).
Google Scholar
A. V. Sem’yanov, “GABAergic inhibition in the CNS: types of GABA receptors and mechanisms of tonic GABA-mediated inhibitory actions,” Neirofiziol., 34, No. 1, 82–92 (2002).
Google Scholar
A. V. Sem’yanov and O. V. Godukhin, “Cellular-molecular mechanisms of focal epileptogenesis,” Usp. Fiziol. Nauk., 32, No. 1, 60–78 (2001).
Google Scholar
V. L. Ézrokhi, A. M. Kas’yanov, and V. A. Zosimovskii, “Generation of action potentials in the terminals of Schäffer collaterals during long-term potentiation in field CA1 of the hippocampus,” Zh. Vyssh. Nerv. Deyat., 49, No. 1, 127–131 (1999).
Google Scholar
L. F. Agnati, M. Zoli, I. Stromberg, and K. Fuze, “Intercellular communication in the brain: wiring versus volume transmission,” Neurosci., 69, No. 3, 711–726 (1995).
Google Scholar
R. Andrade, R. C. Malenka, and R. A. Nicoll, “A G protein couples serotonin and GABAB receptors to the same channels in hippocampus,” Science, 234, No. 4781, 1261–1265 (1986).
CAS
PubMed
Google Scholar
R. Anwyl, “Modulation of vertebrate neuronal calcium channels by transmitters,” Brain Res. Brain Res. Rev., 16, No. 3, 265–281 (1991).
Google Scholar
A. Araque, N. Li, R. T. Doyle, and P. G. Haydon, “SNARE protein-dependent glutamate release from astrocytes,” J. Neurosci., 20, No. 2, 666–673 (2000).
Google Scholar
J. L. Arriza, S. Eliasof, M. P. Kavanaugh, and S. G. Amara, “Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance,” Proc. Natl. Acad. Sci. USA, 94, No. 8, 4155–4160 (1997).
Article
CAS
PubMed
Google Scholar
D. Attwell, “Glia and neurons in dialogue,” Nature, 369, No. 6483, 707–708 (1994).
Google Scholar
D. Bai, G. Zhu, P. Pennefather, et al., “Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid (A) receptors in hippocampal neurons,” Mol. Pharmacol., 59, No. 4, 814–824 (2001).
Google Scholar
M. J. Banks and R. A. Pearce, “Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells,” J. Neurosci., 20, No. 3, 937–948 (2000).
Google Scholar
L. Barakat and A. Bordey, “GAT-1 and reversible GABA transport in Bergmann glia in slices,” J. Neurophysiol., 88, No. 3, 1407–1419 (2002).
Google Scholar
E. M. Branes, Jr., “Assembly and intracellular trafficking of GABAA receptors,” Int. Rev. Neurobiol., 48, 1–29 (2001).
Google Scholar
A. Baude, Z. Nusser, J. D. Roberts, et al., “The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction,” Neuron, 11, No. 4, 771–787 (1993).
Article
CAS
PubMed
Google Scholar
P. V. Belan and P. G. Kostyuk, “Glutamate-receptor-induced modulation of GABAergic synaptic transmission in the hippocampus,” Pflugers Arch., 444, No. 1, 26–37 (2002).
Google Scholar
Y. Ben-Ari, “Excitatory actions of GABA during development: the nature of the nurture,” Nat. Rev. Neurosci., 3, No. 9, 728–739 (2002).
Google Scholar
Y. Ben-Ari, E. Cherubini, R. Corradetti, and J. L. Gaiarsa, “Giant synaptic potentials in immature rat CA3 hippocampal neurones,” J. Physiol., 416, 303–325 (1989).
Google Scholar
T. Berger, T. Muller, and H. Kennenmann, “Developmental regulation of ion channels and receptors on glial cells,” Perspect. Dev. Neurobiol., 2, No. 4, 347–356 (1995).
Google Scholar
D. E. Bergles, J. S. Diamond, and C. E. Jahr, “Clearance of glutamate inside the synapse and beyond,” Curr. Opin. Neurobiol., 9, No. 3, 293–298 (1999).
Google Scholar
D. E. Bergles, J. A. Dzubay, and C. E. Jahr, “Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate,” Proc. Natl. Acad. Sci. USA, 94, No. 26, 14821–14825 (1997).
Google Scholar
D. E. Bergles and C. E. Jahr, “Synaptic activation of glutamate transporters in the hippocampal astrocytes,” Neuron, 19, No. 6, 1297–1308 (1997).
Google Scholar
P. Bezzi, G. Carmignoto, L. Pasti, et al., “Prostaglandins stimulate calcium-dependent glutamate release in astrocytes,” Nature, 391, No. 6664, 281–285 (1998).
Article
CAS
PubMed
Google Scholar
P. Bezzi and A. Volterra, “A neuron-glia signalling network in the active brain,” Curr. Opin. Neurobiol., 11, No. 3, 387–394 (2001).
Google Scholar
J. Boguszewicz, B. Skrajny, J. Kohli, and S. H. Roth, “Evidence that GABA, serotonin, and norepinephrine are involved in the modulation of in vitro rhythmical activity in rat hippocampal slices,” Can. J. Physiol. Pharmacol., 74, No. 12, 1322–1326 (1996).
Google Scholar
A. Bouron, “Modulation of spontaneous quantal release of neuro-transmitters in the hippocampus,” Progr. Neurobiol., 63, No. 6, 613–635 (2001).
Google Scholar
D. Bowie and M. L. Mayer, “Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block,” Neuron, 15, No. 2, 453–462 (1995).
Google Scholar
D. A. Brown, P. R. Adams, A. J. Higgins, and S. Marsh, “Distribution of GABA receptors and GABA carriers in the mammalian nervous system,” J. Physiol., 75, No. 6, 667–671 (1979).
Google Scholar
P. E. Castillo, R. C. Malenka, and R. A. Nicoll, “Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons,” Nature, 388, No. 6638, 182–186 (1997).
Google Scholar
F. A. Chaudhry, K. P. Lehre, M. van Lookeren Campagne, et al., “Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry,” Neuron, 15, No. 3, 711–720 (1995).
Google Scholar
E. Cherubini and F. Conti, “Generating diversity at GABAergic synapses,” Trends Neurosci., 24, No. 3, 155–162 (2001).
Google Scholar
B. A. Clark and S. G. Cull-Candy, “Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse,” J. Neurosci., 22, No. 11, 4428–4436 (2002).
Google Scholar
D. F. Condorelli, F. Conti, V. Gallo, et al., “Expression and functional analysis of glutamate receptors in glial cells,” Adv. Exptl. Med. Biol., 468, 49–67 (1999).
Google Scholar
R. Cossart, J. Epsztein, R. Tyzio, et al., “Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons,” Neuron, 35, No. 1, 147–159 (2002).
Google Scholar
R. Cossart, M. Esclapez, J. C. Hirsch, et al., “GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells,” Nat. Neurosci., 1, No. 6, 470–478 (1998).
Google Scholar
R. Cossart, R. Tyzio, C. Dinocourt, et al., “Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons,” Neuron, 29, No. 2, 497–508 (2001).
Google Scholar
E. Costa, “From GABA(A) receptor diversity emerges a unified vision of GABAergic interneurons,” Ann. Rev. Pharmacol. Toxicol., 38, 321–350 (1998).
Google Scholar
J. E. Coyle, S. Qamar, K. R. Rajashankar, and D. B. Nikolov, “Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding,” Neuron, 33, No. 1, 63–74 (2002).
Google Scholar
N. O. Dalby and I. Mody, “The process of epileptogenesis: a pathophysiological approach,” Curr. Opin. Neurol., 14, No. 2, 187–192 (2001).
Google Scholar
N. C. Danbolt, “Glutamate uptake,” Progr. Neurobiol., 65, No. 1, 1–105 (2001).
Article
Google Scholar
J. S. Diamond and C. E. Jahr, “Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation,” J. Neurophysiol., 83, No. 5, 2835–2843 (2000).
Google Scholar
D. Dietrich, H. Beck, T. Kral, et al., “Metabotropic glutamate receptors modulate synaptic transmission in the perforant path: pharmacology and localization of two distinct receptors,” Brain Res., 767, No. 2, 220–227 (1997).
Google Scholar
D. Dietrich, T. Kral, H. Clusmann, et al., “Presynaptic group II metabotropic glutamate receptors reduce stimulated and spontaneous transmitter release in human dentate gyrus,” Neuropharmacology, 42, No. 3, 297–305 (2002).
Google Scholar
D. DiGregorio, Z. Nusser, and R. Silver, “Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebella synapse,” Neuron, 35, No. 3, 521–533 (2002).
Google Scholar
Ael D. El-Husseini, E. Schnell, S. Dakoji, et al., “Synaptic strength regulated by palmitate cycling on PSD-95,” Cell, 108, No. 6, 849–863 (2002).
Google Scholar
D. Engel, D. Schmitz, T. Gloveli, et al., “Laminar difference in GABA uptake and GAT-1 expression in rat CA1,” J. Physiol., 512, No. 3, 643–649 (1998).
Google Scholar
J. E. Evans, A. Frostholm, and A. Rotter, “Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges,” J. Comp. Neurol., 376, No. 3, 431–446 (1996).
Google Scholar
R. S. Fisher and B. E. Alger, “Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice,” J. Neurosci., 4, No. 5, 1312–1323 (1984).
Google Scholar
M. Frerking, R. C. Malenka, and R. A. Nicoll, “Synaptic activation of kainate receptors on hippocampal interneurons,” Nat. Neurosci., 1, No. 6, 479–486 (1998).
Google Scholar
M. Frerking, C. C. Petersen, and R. A. Nicoll, “Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus,” Proc. Natl. Acad. Sci. USA, 96, No. 22, 12917–12922 (1999).
Google Scholar
A. Furuta, L. J. Martin, C. L. Lin, et al., “Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4,” Neurosci., 81, No. 4, 1031–1042 (1997).
Google Scholar
A. Gadea and A. M. Lopez-Colome, “Glial transporters for glutamate, glycine, and GABA: II. GABA transporter,” J. Neurosci. Res., 63, No. 6, 461–468 (2001).
Google Scholar
H. L. Gaspary, W. Wang, and G. B. Richerson, “Carrier-mediated GABA release activates GABA receptors on hippocampal neurons,” J. Neurophysiol., 80, No. 1, 270–281 (1998).
Google Scholar
G. E. Hardingham, Y. Fukunaga, and H. Bading, “Extrasynaptic NMDA receptors oppose synaptic NMDA receptors by triggering CREB shut-off and cell death pathways,” Nat. Neurosci., 5, No. 5, 405–414 (2002).
Google Scholar
B. Z. Harris and W. A. Lim, “Mechanism and role of PDZ domains in signaling complex assembly,” J. Cell Sci., 114, No. 18, 3219–3231 (2001).
Google Scholar
L. Haugh-Scheidt, R. P. Malchow, and H. Ripps, “GABA transport and calcium dynamics in horizontal cells from the skate retina,” J. Physiol., 488, No. 3, 565–576 (1995).
Google Scholar
M. Hausser and B. A. Clark, “Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration,” Neuron, 19, No. 3, 665–678 (1997).
Google Scholar
Y. He, W. G. Janssen, J. D. Rothstein, and J. H. Morrison, “Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus,” J. Comp. Neurol., 418, No. 3, 255–269 (2000).
Google Scholar
L. Hertz, L. Peng, and J. C. Lai, “Functional studies in cultured astrocytes,” Methods, 16, No. 3, 293–310 (1998).
Google Scholar
W. Hevers, E. R. Korpi, and H. Luddens, “Assembly of functional alpha6beta3gamma2delta GABA(A) receptors in vitro,” Neuro-report, 11, No. 18, 4103–4106 (2000).
Google Scholar
D. R. Hill, N. G. Bowery, and A. L. Hudson, “Inhibition of GABAB receptor binding by guanyl nucleotides,” J. Neurochem., 42, No. 3, 652–657 (1984).
Google Scholar
J. S. Isaacson, “Spillover in the spotlight,” Curr. Biol., 10, No. 13, R475–R477 (2000).
Google Scholar
J. S. Isaacson, J. M. Solis, and R. A. Nicoll, “Local and diffuse synaptic actions of GABA in the hippocampus,” Neuron, 10, No. 2, 165–175 (1993).
Article
CAS
PubMed
Google Scholar
A. Jansson, A. Lippoldt, T. Mazel, et al., “Long distance signalling in volume transmission. Focus on clearance mechanisms,” Progr. Brain Res., 125, 399–413 (2000).
Google Scholar
K. A. Jones, B. Borowsky, J. A. Tamm, et al., “GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2,” Nature, 396, No. 6712, 674–679 (1998).
Article
CAS
PubMed
Google Scholar
H. Kamiya and S. Ozawa, “Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fiber synapse,” J. Physiol., 523, No. 3, 653–665 (2000).
Google Scholar
B. I. Kammer and E. Marva, “Efflux of L-glutamate by synaptic plasma membrane vesicles solated from rat brain,” Biochemistry, 21, No. 13, 3143–3147 (1982).
Google Scholar
J. N. Kew, J. M. Ducarre, M. C. Pflimlin, et al., “Activity-dependent presynaptic autoinhibition by group II metabotropic glutamate receptors at the perforant path inputs to the dentate gyrus and CA1,” Neuropharmacology, 40, No. 1, 20–27 (2001).
Google Scholar
B. S. Khakh and G. Henderson, “Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels,” J. Auton. Nerv. Syst., 81, No. 1–3, 110–121 (2000).
Google Scholar
H. K. Kimelberg, S. K. Goderie, S. Higman, et al., “Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures,” J. Neurosci., 10, No. 5, 1583–1591 (1990).
Google Scholar
H. K. Kimelberg and A. A. Mongin, “Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology,” Contrib. Nephrol., 123, 240–257 (1998).
Google Scholar
M. Kneussel, “Dynamic regulation of GABA(A) receptors at synaptic sites,” Brain Res. Brain Res. Rev., 39, No. 1, 74–83 (2002).
Google Scholar
M. V. Kopanitsa, “Extrasynaptic receptors of neurotransmitters: distribution, mechanisms of activation, and physiological role,” Neirofiziologiya, 29, 357–365 (1997).
Google Scholar
D. M. Kullmann, “Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity,” Neuron, 32, No. 4, 561–564 (2001).
Google Scholar
D. M. Kullmann, “Spillover and synaptic crosstalk mediated by glutamate acid and GABA in the mammalian brain,” Progr. Brain Res., 125, 339–351 (2000).
Google Scholar
D. M. Kullmann and F. Asztely, “Extrasynaptic glutamate spillover in the hippocampus: evidence and implications,” Trends Neurosci., 21, No. 1, 8–14 (1998).
Google Scholar
D. M. Kullmann and A. Semyanov, “Glutamatergic modulation of GABAergic signaling among hippocampal interneurons: novel mechanisms regulating hippocampal excitability,” Epilepsia, 43, Suppl. 5, 174–178 (2002).
Google Scholar
N. Kunishima, Y. Shamada, Y. Tsuji, et al., “Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor,” Nature, 407, No. 6807, 971–977 (2000).
Google Scholar
P. R. Laming, H. Kimelberg, S. Robinson, et al., “Neuronal-glial interactions and behaviour,” Neurosci. Biobehav. Res., 24, No. 3, 295–340 (2000).
Google Scholar
K. P. Lehre, L. M. Levy, O. P. Ottersen, et al., “Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations,” J. Neurosci., 15, No. 3, Pt. 1, 1835–1853 (1995).
Google Scholar
K. P. Lehre and D. A. Rusakov, “Asymmetry of glia near central synapses favors presynaptically directed glutamate escape,” Biophys. J., 83, No. 1, 125–134 (2002).
Google Scholar
J. Lerma, A. V. Paternain, J. R. Naranjo, and B. Mellstrom, “Functional kainate-selective glutamate receptors in cultured hippocampal neurons,” Proc. Natl. Acad. Sci. USA, 90, No. 24, 11688–11692 (1993).
Google Scholar
D. D. Loo, S. Eskandari, K. J. Boorer, et al., “Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1,” J. Biol. Chem., 275, No. 48, 37414–37422 (2000).
Google Scholar
C. C. Lu and D. W. Hilgemann, “GAT1 (GABA:Na+:Cl- ) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches,” J. Gen. Physiol., 114, No. 3, 429–444 (1999).
Google Scholar
R. Lujan, Z. Nusser, J. D. Roberts, et al., “Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus,” Eur. J. Neurosci., 8, No. 7, 1488–1500 (1996).
Google Scholar
T. A. Macek, D. G. Winder, R. W. Gereau, et al., “Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses,” J. Neurophysiol., 76, No. 6, 3798–3806 (1996).
Google Scholar
S. Mager, Y. Cao, and H. A. Lester, “Measurement of transient currents from neurotransmitter transporters expressed in Xenopus oocytes,” Meth. Enzymol., 296, 551–566 (1998).
Google Scholar
R. Malinow and R. C. Malenka, “AMPA receptor trafficking and synaptic plasticity,” Ann. Rev. Neurosci., 25, 103–126 (2002).
Google Scholar
L. J. Martin, A. M. Brambrink, C. Lehmann, et al., “Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum,” Ann. Neurol., 42, No. 3, 335–348 (1997).
Google Scholar
A. K. Mehta and M. K. Ticku, “An update on GABA(A) receptors,” Brain Res. Brain Res. Rev., 29, No. 2–3, 196–217 (1999).
Google Scholar
I. M. Mintz and B. P. Bean, “GABA(B) receptor inhibition of P-type Ca2+ channels in central neurons,” Neuron, 10, No. 5, 889–898 (1993).
Google Scholar
U. Misgeld, M. Bijak, and W. Jarolimek, “A physiological role for GABA(B) receptors and the effects of baclofen in the mammalian central nervous system,” Progr. Neurobiol., 46, No. 4, 423–462 (1995).
Google Scholar
H. Mohler and J. M. Fritschy, “GABA(B) receptors make it to the top as dimers,” Trends Pharmacol. Sci., 20, No. 3, 87–89 (1999).
Google Scholar
M. Nishkova, M. Hirouchi, and K. Kuriyama, “Functional coupling of Gi subtype with GABA(B) receptor/adenylyl cyclase system: analysis using a reconstituted system with purified GTP-binding protein from bovine cerebral cortex,” Neurochem. Int., 31, No. 1, 21–25 (1997).
Google Scholar
Z. Nusser and I. Mody, “Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells,” J. Neurophysiol., 87, No. 5, 2624–2628 (2002).
Google Scholar
Z. Nusser, W. Sieghart, and P. Somogyi, “Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells,” J. Neurosci., 18, No. 5, 1693–1703 (1998).
Google Scholar
S. H. Oliet, R. Piet, and D. A. Poulain, “Control of glutamate clearance and synaptic efficacy by glial coverage of neurons,” Science, 292, No. 5518, 923–926 (2001).
Google Scholar
S. Ozawa, H. Kamiya, and K. Tsuzuki, “Glutamate receptors in the mammalian central nervous system,” Progr. Neurobiol., 54, No. 5, 581–618 (1998).
Google Scholar
V. Parpura, T. A. Basarsky, F. Liu, et al., “Glutamate-mediated astrocyte-neuron signalling,” Neuron, 369, No. 6483, 744–747 (1994).
Google Scholar
D. K. Patneau and M. L. Mayer, “Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors,” J. Neurosci., 10, No. 7, 2385–2399 (1990).
Google Scholar
J. P. Pin and R. Duvoisin, “The metabotropic glutamate receptors: structure and functions,” Neuropharmacology, 34, No. 1, 1–26 (1995).
Article
CAS
PubMed
Google Scholar
C. Plachez, N. C. Danbolt, and M. Recasens, “Transient expression of the glial glutamate transporters GLAST and GLT in hippocampal neurons in primary culture,” J. Neurosci. Res., 59, No. 5, 587–593 (2000).
Google Scholar
T. Rauen and B. I. Kanner, “Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae,” Neurosci. Lett., 169, No. 1–2, 137–140 (1994).
Google Scholar
A. Rodriguez-Moreno, O. Herreras, and J. Lerma, “Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus,” Neuron, 19, No. 4, 893–901 (1997).
Google Scholar
A. Rodriguez-Moreno and J. Lerma, “Kainate receptor modulation of GABA release involves a metabotropic function,” Neuron, 20, No. 6, 1211–1218 (1998).
Google Scholar
A. Rodriguez-Moreno, J. C. Lopez-Garcia, and J. Lerma, “Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons,” Proc. Natl. Acad. Sci. USA, 97, No. 3, 1293–1298 (2000).
Google Scholar
D. A. Rusakov and D. M. Kullmann, “Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation,” J. Neurosci., 18, No. 9, 3158–3170 (1998).
Google Scholar
P. Sah, S. Hestrin, and R. A. Nicoll, “Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons,” Science, 246, No. 4931, 815–818 (1989).
Google Scholar
M. Scanziani, “GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity,” Neuron, 25, No. 3, 673–681 (2000).
Article
CAS
PubMed
Google Scholar
M. Scanziani, B. H. Gahwiler, and S. Charpak, “Target cell-specific modulation of transmitter release at terminals from a single axon,” Proc. Natl. Acad. Sci. USA, 95, No. 20, 12004–12009 (1998).
Google Scholar
M. Scanziani, P.A. Salin, K. E. Vogt, et al., “Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors,” Nature, 385, No. 6617, 630–634 (1997).
Google Scholar
D. Schmitz, M. Frerking, and R. A. Nicoll, “Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses,” Neuron, 27, No. 2, 327–338 (2000).
Google Scholar
D. Schmitz, J. Mellor, and R. A. Nicoll, “Presynaptic kainate receptor modulation of frequency facilitation at hippocampal mossy fiber synapses,” Science, 291, No. 5510, 1972–1976 (2001).
Google Scholar
R. D. Schwartz-Bloom and R. Sah, “Gamma-aminobutyric acid(A) neurotransmission and cerebral ischemia,” J. Neurochem., 77, No. 2, 353–371 (2001).
Google Scholar
A. Semyanov and D. M. Kullmann, “Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons,” Nat. Neurosci., 4, No. 7, 718–723 (2001).
Google Scholar
A. Semyanov and D. M. Kullmann, “Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors,” Neuron, 25, No. 3, 663–672 (2000).
Google Scholar
A. V. Semyanov, M. C. Walker, and D. M. Kullmann, “GABA uptake regulates cortical excitability via cell type-specific tonic inhibition,” Nat. Neurosci., 6, No. 5, 484–490 (2003).
Google Scholar
M. Sheng and T. Nakagawa, “Neurobiology: glutamate receptors on the move,” Nature, 417, No. 6889, 601–602 (2002).
Google Scholar
M. Sheng and C. Sala, “PDZ domains and the organization of supramolecular complexes,” Ann. Rev. Neurosci., 24, 1–29 (2001).
Google Scholar
R. Shigemoto, A. Kinoshita, E. Wada, et al., “Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus,” J. Neurosci., 17, No. 19, 7503–7522 (1997).
Google Scholar
R. Shigemoto, A. Kulik, J. D. Roberts, et al., “Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone,” Nature, 381, No. 6582, 523–525 (1996).
Google Scholar
H. H. Sitte, E. A. Singer, and P. Scholze, “Bi-directional transport of GABA in human embryonic kidney (HFK-293) cells stably expressing the rat GABA transporter GAT-1,” Brit. J. Pharmacol., 135, No. 1, 93–102 (2002).
Google Scholar
I. Soltesz and Z. Nusser, “Background inhibition to the fore,” Nature, 409, No. 6816, 24–27 (2001).
Google Scholar
G. Sperk, C. Schwarzer, K. Tsunashima, et al., “GABA(A) receptor subunits in the rat hippocampus. I. Immunocytochemical distribution of 13 subunits,” Neurosci., 80, No. 4, 987–1000 (1997).
Google Scholar
S. F. Stasheff, D. D. Mott, and W. A. Wilson, “Axon terminal hyper-excitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors,” J. Neurophysiol., 70, No. 3, 976–984 (1993).
Google Scholar
B. M. Stell and I. Mody, “Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons,” J. Neurosci., 22, No. 10, RC223 (2002).
Google Scholar
K. Strange, F. Emma, and P. S. Jackson, “Cellular and molecular physiology of volume-sensitive anion channels,” Amer. J. Physiol., 270, No. 3, Part 1, 711–730 (1996).
Google Scholar
M. Szatkowski, B. Barbour, and D. Attwell, “Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake,” Nature, 348, No. 6300, 443–446 (1990).
Article
CAS
PubMed
Google Scholar
M. Szatkowski, B. Barbour, and D. Attwell, “The potassium-dependence of excitatory amino acid transport: resolution of a paradox,” Brain Res., 555, No. 2, 343–345 (1991).
Google Scholar
T. Taira, K. Lamsa, and K. Kaila, “Post-tetanic excitation mediated by GABA(A) receptors in rat CA1 pyramidal neurons,” J. Neurophysiol., 77, No. 4, 2213–2218 (1997).
Google Scholar
H. Takanaga, S. Ohtsuki, K. Hosoya, and T. Terasaki, “GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier,” J. Cereb. Blood Flow Metab., 21, No. 10, 1232–1239 (2001).
Google Scholar
S. Tomita, R. A. Nicoll, and D. S. Bredt, “PDZ protein interactions regulating glutamate receptor function and plasticity,” J. Cell Biol., 153, No. 5, F19–F24 (2001).
Google Scholar
K. R. Tovar and G. L. Westbrook, “Mobile NMDA receptors at hippocampal synapses,” Neuron, 34, No. 2, 255–264 (2002).
Google Scholar
J. A. Van Hooft, R. Guiffrida, M. Blatow, and H. Monyer, “Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons,” J. Neurosci., 20, No. 10, 3544–3551 (2000).
Google Scholar
S. Vesce, P. Bezzi, and A. Volterra, “Synaptic transmission with the glia,” News Physiol. Sci., 16, 178–184 (2001).
Google Scholar
M. Vignes and G. L. Collingridge, “The synaptic activation of kainate receptors,” Nature, 388, No. 6638, 179–182 (1997).
Google Scholar
O. S. Vinogradova, “Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information,” Hippocampus, 11, No. 5, 578–598 (2001).
Article
CAS
PubMed
Google Scholar
H. Vitten and J. S. Isaacson, “Synaptic transmission: exciting times for presynaptic receptors,” Curr. Biol., 11, No. 17, R695–R697 (2001).
Google Scholar
E. S. Vizi, “Different temperature dependence of carrier-dependence (cytoplasmic) and stimulus-evoked (exocytotic) release of transmitter: a simple method to separate the two types of release,” Neurochem. Int., 33, No. 4, 359–366 (1998).
Google Scholar
E. S. Vizi, “Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system,” Pharmacol. Rev., 52, No. 1, 63–89 (2000).
Google Scholar
E. S. Vizi and J. P. Kiss, “Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions,” However, 8, No. 6, 566–607 (1998).
Google Scholar
G. Von Blankenfeld and H. Kettenmann, “Glutamate and GABA receptors in vertebrate glial cells,” Mol. Neurobiol., 5, No. 1, 31–43 (1991).
Google Scholar
D. G. Winder and N. L. Schramm, “Plasticity and behavior: new genetic techniques to address multiple forms and functions,” Physiol. Behav., 73, No. 5, 763–780 (2001).
Google Scholar
Y. Wu, W. Wang, and G. B. Richerson, “GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter,” J. Neurosci., 21, No. 8, 2630–2639 (2001).
Google Scholar
M. Yokoi, K. Kobayashi, T. Manabe, et al., “Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2,” Science, 273, No. 5275, 645–647 (1996).
CAS
PubMed
Google Scholar
M. Yoshino, S. Sawada, C. Yamamoto, and H. Kamiya, “A metabotropic glutamate receptor agonist DCG-IV suppresses synaptic transmission at mossy fiber pathway of the guinea pig hippocampus,” Neurosci. Lett., 207, No. 1, 70–72 (1996).
Google Scholar