Skip to main content
Log in

Neuronal connection of the cortex and reconstruction of the visual space

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The distributions of retrograde labeled cells in fields 17 and 18 and the fields 17/18 transitional zone were studied in both hemispheres of cats after microiontophoretic administration of horseradish peroxidase into individual cortical columns in fields 17, 18, 19, and 21a. The clustered organization of the internal connections of the cortical fields, the asymmetrical locations of labeled callosal cells relative to the injected columns, and the defined distribution of labeled cells in layers A of the lateral geniculate body suggested that eye-specific neuronal connections support “binding” of the visual hemifields separately for each eye. Application of marker to columns in fields 19 or 21a demonstrated disparate inputs from fields 17 and 18 and the fields 17/18 transitional zone. It is suggested that these connections may support the extraction of loci and stereoscopic boundaries located in the central sectors of the visual space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Microtopography of cortical fields 17 and 18 in the cat,” Sensor. Sistemy, 13, No.4, 278–283 (1999).

    Google Scholar 

  2. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Neuronal connections connecting the visual hemifields,” Sensor. Sistemy, 16, No.2, 83–88 (2002).

    Google Scholar 

  3. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Disparate inputs of field 19 of the cat cortex detected by a horseradish peroxidase transport method,” Sensor. Sistemy, 16, No.4, 268–275 (2002).

    Google Scholar 

  4. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “The fine structure of interhemispheric connections in areas 17, 18 of the cat,” Perception, 30, 115 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. E. Bartfeld and A. Grinvald, “Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex,” Proc. Natl. Acad. Sci. USA, 89, 11905–11909 (1992).

    Google Scholar 

  6. T. Bonhoeffer and A. Grinvald, “The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization,” J. Neurosci., 13, No.10, 4157–4180 (1993).

    Google Scholar 

  7. B. Fischer and J. Kruger, “Disparity tuning and binocularity of single neurons in cat visual cortex, ” Exptl. Brain Res., 35, No.1, 1–8 (1979).

    Google Scholar 

  8. A. R. Harvey, “A physiological analysis of subcortical and callosal projections of area 17 and 18 of the cat,” J. Physiol. (London), 302, 507–534 (1980).

    Google Scholar 

  9. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London), 160, 106–154 (1962).

    Google Scholar 

  10. D. H. Hubel and T. N. Wiesel, “Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat,” J. Neurophysiol., 30, No.6, 1561–1573 (1967).

    Google Scholar 

  11. M. Hubener, D. Shoham, A. Grinvald, and T. Bonhoeffer, “Spatial relationship among three columnar systems in cat areas 17,” J. Neurosci., 17, No.23, 9270–9292 (1997).

    Google Scholar 

  12. R. Malach, “Cortical columns as devices for maximizing neuronal diversity,” TINS, 17, No.3, 101–104 (1994).

    Google Scholar 

  13. C. A. Marzi, A. Antonini, M. Di Stefano, and C. R. Legg, “Callosum-dependent binocular interactions in the lateral syprasylvan area of Siamese cats which lack binocular neurons in areas 17 and 18,” Brain Res., 197, No.1, 230–235 (1980).

    Google Scholar 

  14. M.-M. Mesulam, “Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways,” in: Tracing Neural Connections with HRP, M.-M. Mesulam (ed.), J. Wiley, New York (1982), pp. 1–151.

    Google Scholar 

  15. K. Obermayer and G. G. Blasdel, “Geometry of orientation and ocular dominance columns in monkey striate cortex,” J. Neurosci., 13, No.10, 4114–4129 (1993).

    Google Scholar 

  16. J. F. Olavarria, “Non-mirror-symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex,” J. Comp. Neurol., 366, 643–655 (1996).

    Google Scholar 

  17. J. F. Olavarria, “Callosal connections correlate preferentially with ipsilateral cortical domains in cat areas 17 and 18, and with contralateral domains in the 17/18 transition zone,” J. Comp. Neurol., 433, 437–457 (2001).

    Google Scholar 

  18. G. A. Orban, Neuronal Operations in the Visual Cortex, Springer, Berlin (1984).

    Google Scholar 

  19. B. R. Payne, “Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat’s cerebral cortex,” Visual Neurosci., 4, No.3, 445–474 (1990).

    Google Scholar 

  20. P.-A. Salin and J. Bullier, “Corticocortical connections in the visual system: structure and function, ” Physiol. Rev., 75, No.1, 107–154 (1995).

    Google Scholar 

  21. D. Sanides, “The retinotopic distribution of visual callosal projections in suprasylvian visual area compared to the classical visual areas (17, 18, 19) in the cat,” Exptl. Brain Res., 33, 435–443 (1978).

    Google Scholar 

  22. J. Stone, “The naso-temporal division of the cat’s retina,” J. Comp. Neurol., 126, No.4, 585–599 (1966).

    Google Scholar 

  23. D. Y. Ts’o, R. D. Frostig, E. E. Lieke, and A. Grinvald, “Functional organization of primate visual cortex revealed by high resolution optical imaging,” Science, 249, No.4966, 417–420 (1990).

    Google Scholar 

  24. R. J. Tusa, L. A. Palmer, and A. C. Rosenquist, “Multiple cortical visual areas. Visual field topography in the cat,” in: Cortical Sensory Organization, C. N. Woolsey (ed.), Humana Press, New York (1981), Vol. 2, pp. 1–31.

    Google Scholar 

  25. M. E. Wilson, “Cortico-cortical connexions of the cat visual areas,” J. Anat., 102, 375–386 (1968).

    Google Scholar 

  26. S. Zeki and W. Fries, “A function of corpus callosum in the Siamese cat,” Proc. Roy. Soc. Lond., B207, No.1167, 249–258 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 89, No. 10, pp. 1281–1290, October, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseenko, S.V., Toporova, S.N. & Makarov, F.N. Neuronal connection of the cortex and reconstruction of the visual space. Neurosci Behav Physiol 35, 435–442 (2005). https://doi.org/10.1007/s11055-005-0044-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0044-y

KEY WORDS

Navigation