Skip to main content
Log in

Cracking Patterns and Damage Evolution Characteristics of Coal with Bedding Structures Under Liquid Nitrogen Cooling

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Liquid nitrogen (LN2) fracturing has various advantages, such as low reservoir damage, minimal environmental impact, and excellent permeability. In this study, the cracking pattern and damage evolution characteristics of bedded coal subjected to LN2 fracturing were investigated. The deterioration features of the mechanical parameters and failure mechanisms were examined in a comparable manner using Brazilian splitting tests. Additionally, the damage characteristics of bedded coal during LN2 fracturing were explored. The results indicated that LN2 cooling promoted the development of thermal cracks, consequently reducing the effective bearing capacity of the coal. Randomly distributed thermal cracks actively contributed to macroscopic crack propagation, increasing the proportion of shear cracks and the complexity of the fracture surface. Different bedding angles led to distinct failure modes, significantly impacting the proportion of shear cracks and the fracture surface complexity. Moreover, the bedding planes constantly influenced the propagation direction of the fracturing cracks, resulting in a macroscopic damage zone that expanded preferentially at the weak bedding planes with the borehole at the center. With increasing bedding angles, both the degree and rate of damage of coal decreased sequentially. Consequently, it was feasible to employ LN2 fracturing in low-permeability reservoirs along the bedding planes, facilitating swift and efficient reservoir fracturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Cai, C. Z., Ren, K. D., Yang, Y. G., & Hu, G. Z. (2020). Experimental research on shale cracking characteristics due to liquid nitrogen fracturing. China Journal of Rock Mechanics and Rock Engineering, 39(11), 2183–2203.

    Google Scholar 

  • Chu, Y. P., Sun, H. T., Zhang, D. M., & Yu, G. (2020). Nuclear magnetic resonance study of the influence of the liquid nitrogen freeze-thaw process on the pore structure of anthracite coal. Energy Science and Engineering, 8(5), 1681–1692.

    Article  CAS  Google Scholar 

  • Cong, Y. Z., Zhai, C., Sun, Y., Xu, J. Z., Tang, W., Zheng, Y. F., et al. (2021). Study on transient boiling heat transfer of coal with different bedding angles quenched by liquid nitrogen. Case Studies in Thermal Engineering, 28, 101463.

    Article  Google Scholar 

  • Du, M. L. (2023). Damage evolution law and permeability enhancement mechanism of coal induced by liquid nitrogen. China University Mining Science and Technology. https://doi.org/10.27623/d.cnki.gzkyu.2023.000068

    Book  Google Scholar 

  • Du, M. L., Gao, F., Cai, C. Z., Su, S. J., & Wang, Z. K. (2020). Study on the surface crack propagation mechanism of coal and sandstone subjected to cryogenic cooling with liquid nitrogen. J Natural Gas Science and Engineering, 81, 103436.

    Article  CAS  Google Scholar 

  • Du, M. L., Gao, F., Cai, C. Z., Su, S. J., & Wang, Z. K. (2021). Experimental study on the damage and cracking characteristics of bedded coal subjected to liquid nitrogen cooling. Rock Mechanics and Rock Engineering, 54(11), 5731–5744.

    Article  Google Scholar 

  • Feng, G., Kang, Y., Wang, X. C., Hu, Y. Q., & Li, X. H. (2020). Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions. Rock Mechanics and Rock Engineering, 53(7), 3325–3340.

    Article  Google Scholar 

  • Gao, L. (2021). Study on energy evolution mechanism and catastrophe characteristics during rock deformation and failure. China University of Mining Science and Technolgy. https://doi.org/10.27623/d.cnki.gzkyu.2021.000020

    Book  Google Scholar 

  • Han, W. G., Cui, Z. D., Zhu, Z. G., & Han, X. M. (2022). The effect of bedding plane angle on hydraulic fracture propagation in mineral heterogeneity model. Energies, 15(16), 6052.

    Article  Google Scholar 

  • He, M. C., Hu, J. C., Xiong, W., & Liu, C. Y. (2005). Splitting test and analysis of rock tensile strength. Mining Research and Development, 25(2), 12–16.

    Google Scholar 

  • Hong, C. Y., Yang, R. Y., Huang, Z. W., Qin, X. Z., Wen, H. T., Cong, R. C., et al. (2022). Fracture initiation and morphology of tight sandstone by liquid nitrogen fracturing. Rock Mechanics and Rock Engineering, 55(3), 1285–1301.

    Article  Google Scholar 

  • Hou, P., Su, S. J., Gao, F., Liang, X., Wang, S. C., Gao, Y. N., et al. (2024). Influence of liquid nitrogen freeze-Thaw cycles on mechanical behaviors and permeability properties of coal under different confining pressures. Rock Mechanics and Rock Engineering. https://doi.org/10.1007/s00603-023-03713-5

    Article  Google Scholar 

  • Hou, P., Xue, Y., Gao, F., Dou, F., Su, S., Cai, C., et al. (2022). Effect of liquid nitrogen cooling on mechanical characteristics and fracture morphology of layer coal under Brazilian splitting test. International Journal of Rock Mechanics and Mining Sciences, 151, 105026.

    Article  Google Scholar 

  • Huang, Z. W., Wei, J. W., Li, G. S., & Cai, C. Z. (2016). An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing. Rock Soil Mechanics, 37(3), 694–700.

    Google Scholar 

  • Jiang, C. B., Duan, M. K., Yin, G. Z., Wang, J. G., Lu, T. Y., Xu, J., et al. (2017). Experimental study on seepage properties, AE characteristics and energy dissipation of coal under tiered cyclic loading. Engineering Geology, 221, 114–123.

    Article  Google Scholar 

  • Kong, S. L., Cheng, Y. P., Ren, T., & Liu, H. Y. (2014). A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief. Applied Energy, 131, 67–78.

    Article  CAS  Google Scholar 

  • Li, D. S., & Du, F. Z. (2016). Monitoring and evaluating the failure behavior of ice structure using the acoustic emission technique. Cold Regions Science and Technology, 129, 51–59.

    Article  Google Scholar 

  • Li, X. L., Cao, Z. Y., & Xu, Y. L. (2020). Characteristics and trends of coal mine safety development. Energ Source Part A. https://doi.org/10.1080/15567036.2020.1852339

    Article  Google Scholar 

  • Liu, C., Yin, G. Z., Li, M. H., Shang, D. L., Deng, B. Z., & Song, Z. L. (2019a). Deformation and permeability evolution of coals considering the effect of beddings. International Journal of Rock Mechanics and Mining Sciences, 117, 49–62.

    Article  Google Scholar 

  • Liu, J., Yao, Y. B., Liu, D. M., Xu, L. L., Elsworth, D., Huang, S. P., et al. (2018). Experimental simulation of the hydraulic fracture propagation in an anthracite coal reservoir in the southern Qinshui basin, China. Journal of Petroleum Science and Engineering, 168, 400–408.

    Article  CAS  Google Scholar 

  • Liu, S. M., Li, X. L., Li, Z. H., Chen, P., Yang, X. L., & Liu, Y. J. (2019b). Energy distribution and fractal characterization of acoustic emission (AE) during coal deformation and fracturing. Measurement, 136, 122–131.

    Article  Google Scholar 

  • Liu, X. L., Liu, Z., Li, X. B., Gong, F. Q., & Du, K. (2020). Experimental study on the effect of strain rate on rock acoustic emission characteristics. International Journal of Rock Mechanics and Mining Sciences, 133, 104420.

    Article  Google Scholar 

  • Mao, J. C., Zhang, Z. Y., Zhao, J. H., Wang, D. L., & Zhao, J. Z. (2017). Research progress and prospect of the waterless hydraulic fracturing technology. Scientia Sinica Physica, Mechanica and Astronomica, 47(11), 114605.

    Article  Google Scholar 

  • Nie, J. Y., Cui, Y. F., Yang, Z. Y., Yin, Y. Z., Cao, Z. J., & Li, D. Q. (2022). Effect of heterogeneity of particle properties on variability of laboratory sandy soil properties: A random discrete element perspective. Computers and Geotechnics, 141, 104497.

    Article  Google Scholar 

  • Qu, H., Hu, Y. S., Guo, R. C., Lin, C. C., Xu, J. N., Jun, H., et al. (2023). Experimental study on pore structure alteration of deep shale under liquid nitrogen freezing based on nuclear magnetic resonance. International Journal of Hydrogen Energy, 48(1), 51–66.

    Article  CAS  Google Scholar 

  • Qu, H., Li, C. Y., Qi, C. W., Chen, X. J., Xu, Y., Jun, H., et al. (2022a). Effect of liquid nitrogen freezing on the mechanical strength and fracture morphology in a deep shale gas reservoir. Rock Mechanics and Rock Engineering, 55(12), 7715–7730.

    Article  Google Scholar 

  • Qu, H., Tang, S. M., Liu, Y., Huang, P. P., Wu, X. G., Liu, Z. H., et al. (2022b). Characteristics of complex fractures by liquid nitrogen fracturing in brittle shales. Rock Mechanics and Rock Engineering, 55(4), 1807–1822.

    Article  Google Scholar 

  • Rodríguez, P., & Celestino, T. B. (2019). Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks. Engineering Fracture Mechanics, 210, 54–69.

    Article  Google Scholar 

  • Su, S. J., Hou, P., Gao, F., Gao, Y. N., Zhang, Z. Z., & Liang, X. (2022b). A fractal perspective on structural damage and fracture characteristics of coal subjected to liquid nitrogen cooling at laboratory-scale. Fractals, 30(4), 2250080.

    Article  Google Scholar 

  • Su, S. J., Hou, P., Gao, F., Liang, X., Ding, R. Y., & Cai, C. Z. (2022a). Changes in mechanical properties and fracture behaviors of heated marble subjected to liquid nitrogen cooling. Engineering Fracture Mechanics, 261, 108256.

    Article  Google Scholar 

  • Sun, Y., Zhai, C., Qin, L., Xu, J. Z., & Yu, G. Q. (2018). Coal pore characteristics at different freezing temperatures under conditions of freezing–thawing cycles. Environment and Earth Science, 77(13), 525.

    Article  Google Scholar 

  • Tang, Z. Q., Yang, S. Q., Xu, G., Sharifzadeh, M., & Zhai, C. (2018). Investigation of the effect of low-temperature oxidation on extraction efficiency and capacity of coalbed methane. Process Saf Environ, 117, 573–581.

    Article  CAS  Google Scholar 

  • Tao, J. (2020). Study on damage mechanics of shale nitrogen fracturing after liquid nitrogen pre-conditioning. China University of Mining Science and Technology. https://doi.org/10.27623/d.cnki.gzkyu.2020.000552

    Book  Google Scholar 

  • Tao, J., Wu, Y., Elsworth, D., Li, P., & Hao, Y. (2019). Coupled thermo-hydro-mechanical-chemical modeling of permeability evolution in a CO2-circulated geothermal reservoir. Geofluids, 2019, 5210730.

    Article  Google Scholar 

  • Wang, S. C., Su, S. J., Wang, D. K., Hou, P., Xue, Y., Liang, X., et al. (2023). Experimental study on fracture characteristics of coal due to liquid nitrogen fracturing. Geomech Energy Envir, 33, 100438.

    Article  Google Scholar 

  • Xue, Y., Dang, F. N., Li, R. J., Fan, L. M., Hao, Q., Mu, L., et al. (2018). Seepage-stress-damage coupled model of coal under geo-stress influence. Computers, Materials and Continua, 54(1), 43–59.

    Google Scholar 

  • Xue, Y., Liu, S., Chai, J. R., Liu, J., Ranjith, P. G., Cai, C. Z., et al. (2023). Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems. Applied Energy, 337, 120858.

    Article  Google Scholar 

  • Yang, T., Wang, B. X., Sun, L., & Gao, Q. H. (2002). Effect of various spacer methods for rock split tests. Editorial Office Site Invest Sci Technol(1), 3-7.

  • Yang, G. Q., Hu, W. H., Tang, S. H., Zhou, Z. M., & Song, Z. X. (2023). Impacts of vertical variation of coal seam structure on hydraulic fracturing and resultant gas and water production: A case study on the Shizhuangnan Block, Southern Qinshui Basin. China. Energ Explor Exploit, 42(1), 52–64.

    Article  CAS  Google Scholar 

  • Yang, S. Q., Yin, P. F., & Huang, Y. H. (2019). Experiment and discrete element modelling on strength, deformation and failure behaviour of shale under brazilian compression. Rock Mechanics and Rock Engineering, 52(11), 4339–4359.

    Article  Google Scholar 

  • Yi, J., Xian, X. F., Jiang, Y. D., & Xue, Z. X. (2005). The adaptability study and technologies of prompting exploitation in coal-bed methane seams. China Mining Magazine, 14(12), 26–29.

    Google Scholar 

  • Yuan, J. W., Chen, J. X., Wang, Y., Xia, J. Y., & Chen, M. (2022d). Research on the effect of freeze–thaw cycles at different temperatures on the pore structure of water-saturated coal samples. ACS Omega, 7(31), 27649–27655.

    Article  CAS  Google Scholar 

  • Yuan, J. W., Chen, J. X., Wang, Y., Xia, J. Y., & Chen, M. (2024). Evolution characteristics of pore structure of coal under freeze-thaw cycles combined with scanning electron microscope instrument and nitrogen adsorption experiment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 424–438.

    Article  CAS  Google Scholar 

  • Yuan, J. W., Wang, Y., & Chen, X. J. (2022c). Study on the evolution of pore structure of anthracite coal under liquid-nitrogen freeze–Thaw cycles. ACS Omega, 7(5), 4648–4654.

    Article  CAS  Google Scholar 

  • Yuan, J. W., Wang, Y., Xia, J. Y., Chen, J. X., & Chen, M. (2022b). Research on the influence of liquid nitrogen freeze-thaw cycles on gas emission characteristics of coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 7145–7159.

    Article  CAS  Google Scholar 

  • Yuan, J. W., Xia, J. Y., Wang, Y., Chen, M., & Chen, J. X. (2022a). Effect of freeze–thaw cycles on coal pore structure and gas emission characteristics. ACS Omega, 7(18), 16087–16096.

    Article  CAS  Google Scholar 

  • Zhang, C., Jia, S., Huang, X. H., Shi, X. T., Zhang, T., Zhang, L., et al. (2024b). Accurate characterization method of pores and various minerals in coal based on CT scanning. Fuel, 358, 130128.

    Article  CAS  Google Scholar 

  • Zhang, C., Wang, X. J., Han, P. H., Zhang, T., Zhang, L., & Wang, F. T. (2024a). Acoustic emission and splitting surface roughness of sandstone in a Brazilian splitting test under the influence of water saturation. Engineering Geology, 329, 107369.

    Article  Google Scholar 

  • Zhang, Y., Wu, Y., Vadimovna, S. O., Yin, J. D., Geng, H. Z., & Li, D. C. (2023). Experimental investigation on cracking characteristics of dry and saturated shales in nitrogen fracturing after liquid nitrogen (LN2) injection. Geofluids, 2023, 8861524.

    Article  Google Scholar 

  • Zhao, Y. X., Sun, Z., Gao, Y. R., Wang, X. L., & Song, H. H. (2022). Influence of bedding planes on fracture characteristics of coal under mode II loading. Theoretical and Applied Fracture Mechanics, 117, 103131.

    Article  Google Scholar 

  • Zheng, M. H., Liang, Y. P., Li, Q. G., Mao, S. R., Li, S., Li, J. B., et al. (2023a). Experimental study on failure precursors of coal and sandstone based on two-step clustering of acoustic emission characteristics. Energy Science and Engineering, 11(12), 4505–4519.

    Article  Google Scholar 

  • Zheng, X. L., Zhang, G. Q., Chen, L., Zhang, M., Qiu, R. Y., Zhou, D. W., et al. (2023b). Laboratory investigation on cryogenically induced fractures in shale with beddings. Geoenergy Sci Eng, 222, 211438.

    Article  CAS  Google Scholar 

  • Zhou, X. H., Shan, W. C., Liu, J. P., & Li, J. (2021). Fracture characterization of composite slabs with different connections based on acoustic emission parameters. Structural Control and Health Monitoring, 28(4), e2703.

    Article  Google Scholar 

  • Zhu, W. C., & Tang, C. A. (2004). Micromechanical model for simulating the fracture process of rock. Rock Mechanics and Rock Engineering, 37(1), 25–56.

    Article  Google Scholar 

  • Zhu, W. C., Wei, J., Niu, L. L., Li, S., & Li, S. H. (2018). Numerical simulation on damage and failure mechanism of rock under combined multiple strain rates. Shock and Vibration, 2018, 4534250.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Program of Shanxi Province (202303021222121, 202203021222056 and 202303021222124), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2023L166); the Foundation of the Basic Science (Natural Science) Research Project of Colleges and Universities in Jiangsu Province (23KJA620004); the Special scientific research project of innovation and entrepreneurship of China Coal Research Institute (2021-KXYJ-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hou.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Gao, F., Zheng, W. et al. Cracking Patterns and Damage Evolution Characteristics of Coal with Bedding Structures Under Liquid Nitrogen Cooling. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11053-024-10343-3

Keywords

Navigation