Skip to main content

Advertisement

Log in

Data-Driven Mineral Prospectivity Mapping Based on Known Deposits Using Association Rules

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Recently, machine learning methods have been utilized to mine correlations between geological variables and mineral deposits because of their significance in mineral prospectivity mapping (MPM). However, the characteristics of known mineral deposits are often overlooked in supervised approaches to MPM because only spatial coordinates of known mineral deposits are used as positive training samples. We propose an interpretable method using association rules to predict mineral prospectivity in the Pangxidong district by incorporating characteristics associated with mineral deposits into MPM. Specifically, association rules are a type of data-driven equivalent of ore-controlling factors in knowledge-based exploration and it warrants a broader consideration in modern data-centric exploration. The detailed procedures are as follows: (1) two strong association rules related to mineral deposits were extracted using the Apriori algorithm based on the known Ag–Au and Pb–Zn deposits in Pangxidong; (2) the weights of the variables in the data filtered by the strong association rules were defined using entropy weight method (EWM); and (3) the probability of finding undiscovered mineral deposits was calculated. The Apriori algorithm delineated 57.3% and 52.6% of the known Ag–Au deposits and Pb–Zn deposits within 3.91% and 1.48% of the study area, respectively. In addition, after the EWM, high-probability areas of Ag–Au deposits and Pb–Zn deposits cover 1.05% and 0.43% of the study area, respectively. Therefore, the proposed method is effective and efficient in MPM and it has the potential to be applied more broadly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on management of data (pp. 207–216). 1993 ACM SIGMOD international conference, Washington, D.C., United States. ACM Press. https://doi.org/10.1145/170035.170072.

  • Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In Proceedings of the eleventh international conference on data engineering (pp. 3–14). Presented at the eleventh international conference on data engineering, Taipei, Taiwan. IEEE Computer Society Press. https://doi.org/10.1109/ICDE.1995.380415.

  • Agterberg, F. P., & Bonham-Carter, G. F. (1999). Logistic regression and weights of evidence modeling in mineral exploration. In Proceedings of the 28th international symposium on applications of computer in the mineral industry (APCOM), Golden, Colorado (pp. 483–490).

  • Amiri, V., Rezaei, M., & Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environmental Earth Sciences, 72(9), 3479–3490.

    Article  ADS  CAS  Google Scholar 

  • Bigdeli, A., Maghsoudi, M., & Ghezelbash, R. (2022). Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran. Journal of Geochemical Exploration, 233, 106923.

    Article  CAS  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS. Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS (1st ed.). Elsevier.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Logistic regression for geologically constrained mapping of gold potential, Baguio District, Philippines. Exploration and Mining Geology, 10(3), 165–175. https://doi.org/10.2113/0100165

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., van Ruitenbeek, F. J. A., Hecker, C., & van der Meijde, M. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374–387.

    Article  ADS  Google Scholar 

  • Chen, Y., & Wu, W. (2017). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213. https://doi.org/10.1016/j.oregeorev.2016.06.033

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2019). Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency. Natural Resources Research, 28(1), 31–46. https://doi.org/10.1007/s11053-018-9375-6

    Article  Google Scholar 

  • Chen, Y., Wu, W., & Zhao, Q. (2020). A bat algorithm-based data-driven model for mineral prospectivity mapping. Natural Resources Research, 29(1), 247–265.

    Article  Google Scholar 

  • Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55–70.

    Article  CAS  Google Scholar 

  • Cheng, Q. (2022). Quantitative simulation and prediction of extreme geological events. Science China Earth Science, 65, 1012–1029.

    Article  ADS  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130. https://doi.org/10.1016/0375-6742(94)90013-2

    Article  CAS  Google Scholar 

  • Dong, G., Shen, J., Jia, Y., & Sun, F. (2018). Comprehensive evaluation of water resource security: Case study from Luoyang City, China. Water, 10(8), 1106.

    Article  Google Scholar 

  • Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2023). A novel scheme for mapping of MVT-Type Pb–Zn prospectivity: LightGBM, a highly efficient gradient boosting decision tree machine learning algorithm. Natural Resources Research, 32, 2417–2438.

    Article  CAS  Google Scholar 

  • Hronsky, J. M. A., & Kreuzer, O. P. (2019). Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geology Reviews, 107, 647–653.

    Article  Google Scholar 

  • Jenks, G. F. (1976). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190.

    Google Scholar 

  • Karbalaei Ramezanali, A., Feizi, F., Jafarirad, A., & Lotfi, M. (2020). Geochemical anomaly and mineral prospectivity mapping for vein-type copper mineralization, Kuhsiah-e-Urmak Area, Iran: Application of sequential Gaussian simulation and multivariate regression analysis. Natural Resources Research, 29(1), 41–70.

    Article  CAS  Google Scholar 

  • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • Li, H., Kong, H., Zhou, Z., Wu, Q., Xi, X., & Gabo-Ratio, J. (2013). Ore-forming material sources of the Jurassic Cu–Pb–Zn mineralization in the Qin-Hang ore belt, South China: Constraints from S-Pb isotopes. Geochemistry, 79(2), 280–306. https://doi.org/10.1016/j.geoch.2018.12.008

    Article  CAS  Google Scholar 

  • Li, Q., Chen, G., & Luo, L. (2023). Mineral prospectivity mapping using attention-based convolutional neural network. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2023.105381

    Article  Google Scholar 

  • Lin, N., Chen, Y., & Lu, L. (2020). Mineral potential mapping using a conjugate gradient logistic regression model. Natural Resources Research, 29(1), 173–188. https://doi.org/10.1007/s11053-019-09509-1

    Article  Google Scholar 

  • Liu, L., Zhou, J., An, X., Zhang, Y., & Yang, L. (2010). Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China. Expert Systems with Applications, 37(3), 2517–2521.

    Article  Google Scholar 

  • Luo, Z., Xiong, Y., & Zuo, R. (2020). Recognition of geochemical anomalies using a deep variational autoencoder network. Applied Geochemistry, 122, 104710.

    Article  CAS  Google Scholar 

  • Lyu, W., Chen, Q., Zhu, B., Zhang, Y., Zhou, Y., & Zeng, C. (2016). Geochemical characteristics of REE and its geological significances of Heliao lead-zinc deposit in Guangdong Province. Chinese Rare Earths, 37(3), 75–78. in Chinese with English abstract.

    Google Scholar 

  • Mao, J., Cheng, Y., Chen, M., & Franco, P. (2013). Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48, 267–294.

    Article  CAS  Google Scholar 

  • Medjadba, Y., Hu, D., Liu, W., & Yu, X. (2020). Combining graph clustering and quantitative association rules for knowledge discovery in geochemical data problem. IEEE Access, 8, 40453–40473. https://doi.org/10.1109/ACCESS.2019.2948800

    Article  Google Scholar 

  • Mirzabozorg, S., & Abedi, M. (2023). Recognition of mineralization-related anomaly patterns through an autoencoder neural network for mineral exploration targeting. Applied Geochemistry, 158, 1058074.

    Article  Google Scholar 

  • Moeini, H., & Torab, F. (2017). Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran. Journal of Geochemical Exploration, 180, 15–23.

    Article  CAS  Google Scholar 

  • Morrison, S. M., Prabhu, A., Eleish, A., Hazen, R. M., Golden, J. J., Downs, R. T., Perry, S., Burns, P. C., Ralph, J., & Fox, P. (2023). Predicting new mineral occurrences and planetary analog environments via mineral association analysis. PNAS Nexus, 2, 1–13.

    Article  Google Scholar 

  • Nwaila, G. T., Zhang, S. E., Bourdeau, J. E., Ghorbani, Y., & Carranza, E. J. M. (2022). Artificial intelligence-based anomaly detection of the Assen iron deposit in South Africa using remote sensing data from the Landsat-8 Operational Land Imager. Artificial Intelligence in Geosciences, 3, 71–85.

    Article  Google Scholar 

  • Riahi, S., Bahroudi, A., Abedi, M., Aslani, S., & Lentz, D. R. (2022). Evidential data integration to produce porphyry Cu prospectivity map, using a combination of knowledge and data-driven methods. Geophysical Prospecting, 70, 421–437.

    Article  ADS  Google Scholar 

  • Shen, H., Zhang, Y., Zuo, C., Shao, Y., Zhao, L., Lei, J., Shi, G., Han, R., & Zheng, X. (2022). Ore-forming process revealed by sphalerite texture and geochemistry: A case study at the Kangjiawan Pb–Zn deposit in Qin-Hang Metallogenic Belt, South China. Ore Geology Reviews, 150, 105153. https://doi.org/10.1016/j.oregeorev.2022.105153

    Article  Google Scholar 

  • Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26–49.

    Article  Google Scholar 

  • Wang, C., Chen, J., & Ouyang, Y. (2022). Determination of predictive variables in mineral prospectivity mapping using supervised and unsupervised methods. Natural Resources Research, 31(4), 2081–2102. https://doi.org/10.1007/s11053-021-09982-7

    Article  Google Scholar 

  • Wang, J., Zhou, Y., & Xiao, F. (2020). Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China. Applied Geochemistry, 120, 104679.

    Article  CAS  Google Scholar 

  • Wang, X., the CGB Sampling Team. (2015). China geochemical baselines: sampling methodology. Journal of Geochemical. Exploration., 148, 25–39. https://doi.org/10.1016/j.gexplo.2014.05.018

    Article  CAS  Google Scholar 

  • Wang, Z. (1998). Geology and geochemistry of hydrothermally altered deformed-rock type Ag–Au deposits and their resource potential: With detailed anatomy of Pangxidong-Jinshan Ag–Au deposit belt from Yunkai Area, South China. Guangzhou: Guangzhou Institute of Geochemistry Chinese Academy of Sciences.

    Google Scholar 

  • Xiao, F., Wang, K., Hou, W., & Erten, O. (2020). Identifying geochemical anomaly through spatially anisotropic singularity mapping: A case study from silver-gold deposit in Pangxidong district, SE China. Journal of Geochemical Exploration, 210, 106453.

    Article  CAS  Google Scholar 

  • Xie, X., Mu, X., & Ren, T. (1997). Geochemical mapping in China. Journal of Geochemical Exploration, 60, 99–113. https://doi.org/10.1016/S0375-6742(97)00029-0

    Article  CAS  Google Scholar 

  • Xiong, Y., & Zuo, R. (2020). Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine. Computer & Geoscience, 140, 75–82.

    Article  Google Scholar 

  • Xiong, Y., Zuo, R., & Carranza, E. J. M. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102, 811–817.

    Article  Google Scholar 

  • Yang, F., Wang, Z., Zuo, R., Sun, S., & Zhou, B. (2023). Quantification of uncertainty associated with evidence layers in mineral prospectivity mapping using direct sampling and convolutional neural network. Natural Resources Research, 32, 79–98.

    Article  Google Scholar 

  • Yang, N., Zhang, Z., Yang, J., & Hong, Z. (2022). Mineral prospectivity prediction by integration of convolutional autoencoder network and random forest. Natural Resources Research, 31(3), 1103–1119. https://doi.org/10.1007/s11053-022-10038-7

    Article  Google Scholar 

  • Yu, X., Xiao, F., Zhou, Y., Wang, Y., & Wang, K. (2019). Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag–Au–Pb–Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district. Journal of Geochemical Exploration, 203, 87–95.

    Article  CAS  Google Scholar 

  • Zerai, F. T., Gorsevski, P. V., Panter, K. S., Farver, J., & Tangestani, M. H. (2023). Integration of ASTER and soil survey data by principal components analysis and one-class support vector machine for mineral prospectivity mapping in Kerkasha, Southwestern Eritrea. Natural Resources Research, 32, 2463–2493.

    Article  Google Scholar 

  • Zhang, B., Jiang, Z., Chen, Y., Cheng, N., Khan, U., & Deng, J. (2022a). Geochemical association rules of elements mined using clustered events of spatial autocorrelation: A case study in the Chahanwusu River Area, Qinghai Province, China. Applied Sciences, 12(4), 2247. https://doi.org/10.3390/app12042247

    Article  CAS  Google Scholar 

  • Zhang, P., Zhang, Z., Yang, J., & Cheng, Q. (2023). Machine learning prediction of ore deposit genetic type using magnetite geochemistry. Natural Resources Research, 32(1), 99–116.

    Article  CAS  Google Scholar 

  • Zhang, S. E., Bourdeau, J. E., Nwaila, G. T., & Corrigan, D. (2021). Towards a fully data-driven prospectivity mapping methodology: A case study of the Southeastern Churchill Province, Québec and Labrador. Artificial Intelligence in Geosciences, 2, 128–147.

    Article  Google Scholar 

  • Zhang, S., Carranza, E. J. M., Xiao, K., Wei, H., Yang, F., Chen, Z., Li, N., & Xiang, J. (2022b). Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers. Natural Resources Research, 31, 1981–1999.

    Article  Google Scholar 

  • Zhang, X., Ni, P., Wang, G., Jiang, D., Zhu, R., Jiang, Y., & Wang, F. (2022c). Magmatic controls on the mineralization potential of a porphyry Cu system: The case of Jurassic Tongshan skarn Cu deposit in the Qin-Hang Belt, South China. Gondwana Research, 101, 203–223. https://doi.org/10.1016/j.gr.2021.08.004

    Article  ADS  CAS  Google Scholar 

  • Zhang, Y. (2012). Mineralization geochemical anomaly extraction and verification in Pangxidong area of Qinzhou-Hangzhou Tectonic Joint Belt, South, China. Guangzhou: Sun Yatsen University.

    Google Scholar 

  • Zhang, Y., Shao, Y., Liu, Q., Chen, H., Quan, W., & Sun, A. (2018). Jurassic magmatism and metallogeny in the eastern Qin-Hang Metallogenic Belt, SE China: An example from the Yongping Cu deposit. Journal of Geochemical Exploration, 186, 281–297. https://doi.org/10.1016/j.gexplo.2018.01.006

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhou, Y., Wang, L., Wang, Z., He, J., An, Y., Li, H., Zeng, C., Liang, J., Lyu, W., & Gao, L. (2013). Mineralization-related geochemical anomalies derived from stream sediment geochemical data using multifractal analysis in Pangxidong area of Qinzhou-Hangzhou tectonic joint belt, Guangdong Province, China. Journal of Central South University, 20, 184–192.

    Article  ADS  CAS  Google Scholar 

  • Zhang, Z., Wang, G., Carranza, E. J. M., Fan, J., Liu, X., Zhang, X., Zhang, X., Dong, Y., Chang, Y., Chang, X., & Sha, D. (2022d). An integrated framework for data-driven mineral prospectivity mapping using bagging-based positive-unlabeled learning and Bayesian cost-sensitive logistic regression. Natural Resources Research, 31(6), 3041–3060.

    Article  Google Scholar 

  • Zhong, L., Li, J., Peng, T., Xia, B., & Liu, L. (2013). Zircon U-Pb geochronology and Sr–Nd–Hf isotopic compositions of the Yuanzhuding granitoid porphyry within the Shi-Hang Zone, South China: Petrogenesis and implications for Cu–Mo mineralization. Lithos, 122(1), 402–415.

    Article  ADS  Google Scholar 

  • Zhou, Y., Zhang, Z., Yang, J., Ge, Y., & Cheng, Q. (2022). Machine learning and singularity analysis reveal zircon fertility and magmatic intensity: implications for porphyry copper potential. Natural Resources Research, 31(6), 3061–3078.

    Article  CAS  Google Scholar 

  • Zhou, Y., Zheng, Y., Zeng, C., & Liang, J. (2015). On the understanding of Qinzhou Bay-Hangzhou Bay metallogenic belt, South China. Earth Science Frontier, 22, 1–6. in Chinese with English abstract.

    ADS  Google Scholar 

  • Zou, Z., Yun, Y., & Sun, J. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18(5), 1020–1023.

    Article  CAS  Google Scholar 

  • Zuo, R., Kreuzer, O. P., Wang, J., Xiong, Y., Zhang, Z., & Wang, Z. (2021). Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Natural Resources Research, 30(5), 3059–3079. https://doi.org/10.1007/s11053-021-09871-z

    Article  Google Scholar 

  • Zuo, R., Luo, Z., Xiong, Y., & Yin, B. (2022). A geologically constrained variational autoencoder for mineral prospectivity mapping. Natural Resources Research, 31(3), 1121–1133.

    Article  Google Scholar 

  • Zuo, R., Xiong, Y., Wang, Z., Wang, J., & Kreuzer, O. (2023). A new generation of artificial intelligence algorithms for mineral prospectivity mapping. Natural Resources Research, 32, 1859–1869.

    Article  CAS  Google Scholar 

  • Zuo, R., & Xu, Y. (2023). Graph deep learning model for mapping mineral prospectivity. Mathematical Geosciences, 51, 1–21.

    Article  ADS  MathSciNet  Google Scholar 

  • Zuo, R., & Xu, Y. (2024). A physically constrained hybrid deep learning model to mine a geochemical data cube in support of mineral exploration. Computers & Geosciences, 182, 105490.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Julie E. Bourdeau, the anonymous reviewers and associate editor for their patience, invaluable efforts and insightful suggestions that greatly improved our manuscript. This work was supported by the National Natural Science Foundation of China (No. U1911202), National Key R&D Program of China (2022YFF0801201), Guangdong Provincial Department of Science and Technology (2020B111137001) and Natural Resource Research Student Award (2022) from International Association for Mathematical Geoscience.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengpeng Yu or Yongzhang Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest in this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yu, P., Wang, K. et al. Data-Driven Mineral Prospectivity Mapping Based on Known Deposits Using Association Rules. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11053-024-10328-2

Keywords

Navigation