Skip to main content

Advertisement

Log in

Assessing the Uncertainty in Lithology, Grades and Recoverable Resources in an Iron Deposit in Southern Cameroon

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Geological modeling is an essential step in mineral resource assessment. Geologists typically use deterministic methods to create interpreted models, which ignore the uncertainty in the geological domain layout. This study explores a hierarchical approach for simulating a categorical variable (lithological domain) and a continuous variable (iron grade) in a deposit located in Cameroon, enhancing confidence and accounting for geological uncertainty in resource evaluation. To achieve this, lithological domains are simulated using a non-stationary variant of the plurigaussian model, followed by the simulation of iron grade while accounting for its spatial correlation within and across domains. Cross-validation is used to validate the model, and the simulated block models are processed to assess in-situ and recoverable resources and their uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Aadil, N., & Sohail, G. M. (2014). 3D geological modeling of Punjab platform, Middle Indus Basin Pakistan through integration of Wireline logs and seismic data. Journal of the Geological Society of India, 83(2), 211–217.

    Google Scholar 

  • Amorim, R., Brazil, E. V., Samavati, F., & Sousa, M. C. (2014). 3D geological modeling using sketches and annotations from geologic maps. In Proceedings of the 4th joint symposium on computational aesthetics, non-photorealistic animation and rendering, and sketch-based interfaces and modeling (pp. 17–25). Association for Computing Machinery.

  • Anderson, K. F. E., Wall, F., Rollinson, G. K., & Moon, C. J. (2014). Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon. Ore Geology Reviews, 62, 25–39.

    Google Scholar 

  • Anderson, K. F. E. (2014). Geometallurgical evaluation of the Nkout (Cameroon) and Putu (Liberia) iron ore deposits. Unpublished Ph.D. dissertation, the University of Exeter.

  • Armstrong, M., Galli, A., Beucher, H., Loch, G., Renard, D., Doligez, B., Eschard, R., & Geffroy, F. (2011). Plurigaussian simulations in geosciences. Springer.

    Google Scholar 

  • Carrasco, P., Ibarra, F., Le Loc’h, G., Rojas, R., & Séguret, S. (2005). Application of the truncated Gaussian simulation method to the MM deposit at Codelco Norte, Chile. In 67th EAGE conference and exhibition-workshops (pp. cp-140). EAGE Publications BV.

  • Caté, A., Perozzi, L., Gloaguen, E., & Blouin, M. (2017). Machine learning as a tool for geologists. The Leading Edge, 36(3), 215–219.

    Google Scholar 

  • Caumon, G., Gray, G., Antoine, C., & Titeux, M. O. (2012). Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: Theory and application to a regional model of La Popa Basin, NE Mexico. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1613–1621.

    Google Scholar 

  • Celecia, A., Figueiredo, K., Rodriguez, C., Vellasco, M., Maldonado, E., Silva, M. A., Rodrigues, A., Nascimento, R., & Ourofino, C. (2021). Unsupervised machine learning applied to seismic interpretation: Towards an unsupervised automated interpretation tool. Sensors, 21(19), 6347.

    Google Scholar 

  • Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty. Wiley.

    Google Scholar 

  • de Sá, V. R., Koike, K., Goto, T., Nozaki, T., Takaya, Y., & Yamasaki, T. (2021). 3D geostatistical modeling of metal contents and lithofacies for mineralization mechanism determination of a seafloor hydrothermal deposit in the middle Okinawa Trough, Izena Hole. Ore Geology Reviews, 135, 104194.

    Google Scholar 

  • Deraisme, J., & Field, M. (2006). Geostatistical simulations of kimberlite orebodies and application to sampling optimisation. In Proceedings of the 6th international mining geology conference (pp. 193–203). Australasian Institute of Mining and Metallurgy.

  • Dubrule, O. (1993). Introducing more geology in stochastic reservoir modelling. In A. Soares (Ed.), Geostatistics Tróia’92 (pp. 351–369). Springer.

    Google Scholar 

  • Dumakor-Dupey, N. K., & Arya, S. (2021). Machine learning: A review of applications in mineral resource estimation. Energies, 14(14), 4079.

    Google Scholar 

  • Ekolle-Essoh, F., Meying, A., Zanga-Amougou, A., & Emery, X. (2022). Resource estimation in multi-unit mineral deposits using a multivariate Matérn correlation model: An application in the iron ore deposit of Nkout, Cameroon. Minerals, 12(12), 1599.

    Google Scholar 

  • Emery, X. (2007). Simulation of geological domains using the plurigaussian model: New developments and computer programs. Computers and Geosciences, 33(9), 1189–1201.

    Google Scholar 

  • Emery, X. (2010). Iterative algorithms for fitting a linear model of coregionalization. Computers and Geosciences, 36(9), 1150–1160.

    Google Scholar 

  • Emery, X., Arroyo, D., & Peláez, M. (2014). Simulating large Gaussian random vectors subject to inequality constraints by Gibbs sampling. Mathematical Geosciences, 46(3), 265–283.

    Google Scholar 

  • Emery, X., Arroyo, D., & Porcu, E. (2016). An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. Stochastic Environmental Research and Risk Assessment, 30(7), 1863–1873.

    Google Scholar 

  • Emery, X., & Maleki, M. (2019). Geostatistics in the presence of geological boundaries: Application to mineral resources modeling. Ore Geology Reviews, 114, 103124.

    Google Scholar 

  • Emery, X., & Séguret, S. A. (2020). Geostatistics for the mining industry—Applications to porphyry copper deposits. CRC Press.

    Google Scholar 

  • Falivene, O., Arbués, P., Gardiner, A., Pickup, G., Muñoz, J. A., & Cabrera, L. (2006). Best practice stochastic facies modeling from a channel-fill turbidite sandstone analog (the Quarry outcrop, Eocene Ainsa basin, northeast Spain). AAPG Bulletin, 90(7), 1003–1029.

    Google Scholar 

  • Ferrer, R., Emery, X., Maleki, M., & Navarro, F. (2021). Modeling the uncertainty in the layout of geological units by implicit boundary simulation accounting for a preexisting interpretive geological model. Natural Resources Research, 30(6), 4123–4145.

    Google Scholar 

  • Fontaine, L., & Beucher, H. (2006). Simulation of the Muyumkum uranium roll front deposit by using truncated plurigaussian method. In Proceedings of the 6th international mining geology conference (pp. 205–216). Australasian Institute of Mining and Metallurgy.

  • Fouedjio, F., & Séguret, S. (2016). Predictive geological mapping using closed-form non-stationary covariance functions with locally varying anisotropy: Case study at El Teniente mine (Chile). Natural Resources Research, 25(4), 431–443.

    Google Scholar 

  • Galli, A., & Beucher, H. (1997). Stochastic models for reservoir characterization: A user-friendly review. In Latin American and Caribbean petroleum engineering conference. Society of Petroleum Engineers, paper SPE-38999.

  • Glacken, I. M., Snowden, D. V., & Edwards, A. C. (2001). Mineral resource estimation. In A. C. Edward (Ed.), Mineral resource and ore reserve estimation: The AusIMM guide to good practice (pp. 189–198). Australasian Institute of Mining and Metallurgy.

    Google Scholar 

  • Goetz, A. F., & Rowan, L. C. (1981). Geologic remote sensing. Science, 211(4484), 781–791.

    Google Scholar 

  • Gonçalves, Í. G., Kumaira, S., & Guadagnin, F. (2017). A machine learning approach to the potential-field method for implicit modeling of geological structures. Computers and Geosciences, 103, 173–182.

    Google Scholar 

  • Hong, J., & Oh, S. (2021). Model selection for mineral resource assessment considering geological and grade uncertainties: Application of multiple-point geostatistics and a cluster analysis to an iron deposit. Natural Resources Research, 30(3), 2047–2065.

    Google Scholar 

  • Jessell, M., Ogarko, V., De Rose, Y., Lindsay, M., Joshi, R., Piechocka, A., Grose, L., De La Varga, M., Ailleres, L., & Pirot, G. (2021). Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0. Geoscientific Model Development, 14(8), 5063–5092.

    Google Scholar 

  • Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., & Kumar, V. (2018). Machine learning for the geosciences: Challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering, 31(8), 1544–1554.

    Google Scholar 

  • Lantuéjoul, C. (2002). Geostatistical simulation: Models algorithms. Springer.

    Google Scholar 

  • Liang, D., Hua, W., Liu, X., Zhao, Y., & Liu, Z. (2021). Uncertainty assessment of a 3D geological model by integrating data errors, spatial variations and cognition bias. Earth Science Informatics, 14(1), 161–178.

    Google Scholar 

  • Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015). Geological realism in hydrogeological and geophysical inverse modeling: A review. Advances in Water Resources, 86(A), 86–101.

    Google Scholar 

  • Liu, Y., & Wu, L. (2016). Geological disaster recognition on optical remote sensing images using deep learning. Procedia Computer Science, 91, 566–575.

    Google Scholar 

  • Lougheed, B. C., & Obrochta, S. P. (2019). A rapid, deterministic age-depth modeling routine for geological sequences with inherent depth uncertainty. Paleoceanography and Paleoclimatology, 34(1), 122–133.

    Google Scholar 

  • Madani, N., & Emery, X. (2015). Simulation of geo-domains accounting for chronology and contact relationships: application to the Río Blanco copper deposit. Stochastic Environmental Research and Risk Assessment, 29(8), 2173–2191.

    Google Scholar 

  • Madani, N., & Emery, X. (2017). Plurigaussian modeling of geological domains based on the truncation of non-stationary Gaussian random fields. Stochastic Environmental Research and Risk Assessment, 31(4), 893–913.

    Google Scholar 

  • Madani, N., Maleki, M., & Emery, X. (2019). Nonparametric geostatistical simulation of subsurface facies: Tools for validating the reproduction of, and uncertainty in, facies geometry. Natural Resources Research, 28(3), 1163–1182.

    Google Scholar 

  • Maleki, M., & Emery, X. (2015). Joint simulation of grade and rock type in a stratabound copper deposit. Mathematical Geosciences, 47(4), 471–495.

    Google Scholar 

  • Maleki, M., & Emery, X. (2020). Geostatistics in the presence of geological boundaries: Exploratory tools for contact analysis. Ore Geology Reviews, 120, 103397.

    Google Scholar 

  • Matheron, G., Beucher, H., de Fouquet, C., Galli, A., Guérillot, D., & Ravenne, C. (1987). Conditional simulation of the geometry of fluvio-deltaic reservoirs. In SPE annual technical conference and exhibition. Society of Petroleum Engineers, paper SPE-16753.

  • McGaughey, J. (2007). Geological models, rock properties, and the 3D inversion of geophysical data. In Milkereit, B. (Ed.), Proceedings of exploration 07: Fifth decennial international conference on mineral exploration (pp. 473–483).

  • Mery, N., Emery, X., Cáceres, A., Ribeiro, D., & Cunha, E. (2017). Geostatistical modeling of the geological uncertainty in an iron ore deposit. Ore Geology Reviews, 88, 336–351.

    Google Scholar 

  • Ndime, E. N., Ganno, S., & Nzenti, J. P. (2019). Geochemistry and Pb–Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, southern Cameroon. International Journal of Earth Sciences, 108, 1551–1570.

    Google Scholar 

  • Ndime, E. N., Ganno, S., Tamehe, L. S., & Nzenti, J. P. (2018). Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. Journal of African Earth Sciences, 148, 80–98.

    Google Scholar 

  • Olea, R. A. (1999). Geostatistics for engineers and earth scientists. Springer.

    Google Scholar 

  • Paithankar, A., & Chatterjee, S. (2018). Grade and tonnage uncertainty analysis of an African copper deposit using multiple-point geostatistics and sequential Gaussian simulation. Natural Resources Research, 27(4), 419–436.

    Google Scholar 

  • Pan, D., Li, S., Xu, Z., Zhang, Y., Lin, P., & Li, H. (2019). A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: Development and case study. Engineering Geology, 262, 105310.

    Google Scholar 

  • Ravenne, C., Galli, A., Doligez, B., Beucher, H., & Eschard, R. (2002). Quantification of facies relationships via proportion curves. In M. Armstrong, C. Bettini, N. Champigny, A. Galli, & A. Remacre (Eds.), Geostatistics Rio 2000 (pp. 19–39). Springer.

    Google Scholar 

  • Rondon, O. (2009). A look at plurigaussian simulation for a nickel laterite deposit. In 7th international mining & geology conference. The Australasian Institute of Mining and Metallurgy.

  • Schweizer, D., Blum, P., & Butscher, C. (2017). Uncertainty assessment in 3-D geological models of increasing complexity. Solid Earth, 8(2), 515–530.

    Google Scholar 

  • Seifert, A., & Rasp, S. (2020). Potential and limitations of machine learning for modeling warm-rain cloud microphysical processes. Journal of Advances in Modeling Earth Systems, 12(12), e2020MS002301.

    Google Scholar 

  • Sen, D., Chen, H., Datta-Gupta, A., Kwon, J., & Mishra, S. (2021). Machine learning based rate optimization under geologic uncertainty. Journal of Petroleum Science and Engineering, 207, 109116.

    Google Scholar 

  • Sideri, D., Modis, K., & Rozos, D. (2013). Application of geostatistical simulation models in the characterization of complex geological structures. Bulletin of the Geological Society of Greece, 47(4), 1882–1891.

    Google Scholar 

  • Skvortsova, T., Beucher, H., Armstrong, M., Forkes, J., Thwaites, A., & Turner, R. (2002). Simulating the geometry of a granite-hosted uranium orebody. In M. Armstrong, C. Bettini, N. Champigny, A. Galli, & A. Remacre (Eds.), Geostatistics Rio 2000 (pp. 85–99). Springer.

    Google Scholar 

  • Talebi, H., Mueller, U., Peeters, L. J., Otto, A., de Caritat, P., Tolosana-Delgado, R., & van den Boogaart, K. G. (2022). Stochastic modelling of mineral exploration targets. Mathematical Geosciences, 54(3), 593–621.

    Google Scholar 

  • Toteu, S. F., Penaye, J., & Djomani, Y. P. (2004). Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41(1), 73–85.

    Google Scholar 

  • Verly, G. (1983). The multigaussian approach and its applications to the estimation of local reserves. Journal of the International Association for Mathematical Geology, 15(2), 259–286.

    Google Scholar 

  • Wellmann, F., & Caumon, G. (2018). 3-D Structural geological models: Concepts, methods, and uncertainties. Advances in Geophysics, 59, 1–121.

    Google Scholar 

  • Wenling, L. I. U. (2008). Geological modeling technique for reservoir constrained by seismic data. Acta Petrolei Sinica, 29(1), 64.

    Google Scholar 

  • Wu, Q., Xu, H., & Zou, X. (2005). An effective method for 3D geological modeling with multi-source data integration. Computers and Geosciences, 31(1), 35–43.

    Google Scholar 

  • Yarus, J. M., & Chambers, R. L. (1994). Stochastic modeling and geostatistics: Principles, methods, and case studies. American Association of Petroleum Geologists.

  • Yarus, J. M., Chambers, R. L., Maucec, M., & Shi, G. (2012). Facies simulation in practice: Lithotype proportion mapping and plurigaussian simulation, a powerful combination. Paper P-014 Presented at the 9th International Geostatistics Congress, Oslo, Norway. Retrieved May 21, 2023. http://geostats2012.nr.no/pdfs/1745381.pdf

  • Yünsel, T. Y. (2018). Simulation of cement raw material deposits using plurigaussian technique. Open Geosciences, 10(1), 889–901.

    Google Scholar 

  • Yunsel, T. Y., & Ersoy, A. (2013). Geological modeling of rock type domains in the Balya (Turkey) lead-zinc deposit using plurigaussian simulation. Open Geosciences, 5(1), 77–89.

    Google Scholar 

  • Yunsel, T. Y., & Ersoy, A. (2011). Geological modeling of gold deposit based on grade domaining using plurigaussian simulation technique. Natural Resources Research, 20(4), 231–249.

    Google Scholar 

  • Zanchi, A., Francesca, S., Stefano, Z., Simone, S., & Graziano, G. (2009). 3D reconstruction of complex geological bodies: Examples from the Alps. Computers and Geosciences, 35(1), 49–69.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Agency for Research and Development of Chile, through Grants ANID PIA AFB220002 and ANID Fondecyt 1210050. The authors are grateful to two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin Ekolle Essoh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekolle Essoh, F., Emery, X. & Meying, A. Assessing the Uncertainty in Lithology, Grades and Recoverable Resources in an Iron Deposit in Southern Cameroon. Nat Resour Res 32, 2515–2540 (2023). https://doi.org/10.1007/s11053-023-10276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10276-3

Keywords

Navigation