Skip to main content

Advertisement

Log in

A Robust Mechanistic Model for Pore Pressure Prediction from Petrophysical Logs Aided by Machine Learning in the Gas Hydrate-Bearing Sediments over the Offshore Krishna–Godavari Basin, India

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Pore pressure (PP) is the most significant and dynamic parameter in reservoir geomechanics, and it optimizes well drilling in the hydrocarbon industry. Improved error accuracy for PP prediction could reduce drilling risk and hazards, and improve wellbore stability and better casing seat selection. Choosing the appropriate mud weight design for an optimized wellbore drilling is another aspect of PP prediction. Initial estimates of the vertical stress (SV) are made in the petrophysical log (especially sonic, density, and resistivity). We attempted to predict PP using four empirical models: the Eaton, Bower, Miller, and Tau models. The magnitudes of SV and PP ranged 25.87–32.72 MPa and 25.31–31.82 MPa, respectively, in the depth interval of 2548.12–2980.02 m, respectively, for linked wells at site National Gas Hydrate Program (NGHP) Expedition-02. In contrast, logging while drilling (LWD) derived actual and predicted pressures were validated with coefficients of determination, R2, varying from 0.995 to 0.998, which were used to evaluate the most precise PP prediction. Further, robust machine learning (ML) techniques, namely artificial neural networks (ANN), decision trees (DT), and support vector regression (SVR), were employed for the prediction of PP using petrophysical log datasets. As a result, numerous datasets were collected from selected wells and applied for model training, testing, and validation. The DT (best-suited) techniques produced the most accurate prediction for PP, with R2 of 0.998. No overpressure generation, whereas normal pressure was monitored in the gas hydrate zone, and slightly higher pressure was experienced in the free gas zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. * 1 ft = 0.3048 m

References

  • Abad, A. R. B., Mousavi, S., Mohamadian, N., Wood, D. A., Ghorbani, H., & Davoodi, S. (2021). Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs. Journal of Natural Gas Science and Engineering, 95, 104210.

    Google Scholar 

  • Abdelaal, A., Elkatatny, S., & Abdulraheem, A. (2021). Data-driven modeling approach for pore pressure gradient prediction while drilling from drilling parameters. ACS Omega. https://doi.org/10.1021/acsomega.1c01340

    Article  Google Scholar 

  • Abidin, M. H. (2014). Pore pressure estimation using artificial neural network. http://utpedia.utp.edu.my/id/eprint/14317.

  • Alam, J., Chatterjee, R., & Dasgupta, S. (2019). Estimation of pore pressure, tectonic strain and stress magnitudes in the upper Assam basin: a tectonically active part of India. Geophysics Journal International, 216, 659–675.

    Google Scholar 

  • Anderson, B., Kurihara, M., White, M. D., Moridis, G. J., Wilson, S. J., Pooladi-Darvish, M., Gaddipati, M., Masuda, Y., Collett, T. S., Hunter, R. B., Narita, H., Rose, K., & Boswell, R. (2011). Regional long-term production modeling from a single well test, mount Elbert gas hydrate stratigraphic test well, Alaska north slope. Marine and Petroleum Geology., 28(2), 493–501.

    Google Scholar 

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54–62.

    Google Scholar 

  • Arun, K.P., Sain, K., Kumar, J. (2018). Elastic parameters from constrained AVO inversion: application to a BSR in the Mahanadi offshore, India. Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2017.10.025.

  • Ashford, D. I., Numasawa, M., Martin, C. K., Yamamoto, K., Dallimore, S. R., Wright, J. F., & Taylor, A. E. (2012). Overview of engineering and operations activities conducted as part of the JOGMEC/NRCan/Aurora Mallik 2007–2008 Gas Hydrate Production Research Well Program, Part A: 2007 field program. Scientific results from the JOGMEC/NRCan/Aurora Mallik 2007–2008 gas hydrate production research well program, 35–51.

  • Boswell, R., Myshakin, E., Moridis, G., Konno, Y., Collett, T. S., Reagan, M., Ajayi, T., & Seol, Y. (2019b). India National Gas Hydrate Program Expedition 02 summary of scientific results: Numerical simulation of reservoir response to depressurization. Marine and Petroleum Geology, 108, 154–166.

    Google Scholar 

  • Boswell, R., Schoderbek, D., Collett, T. S., Ohtsuki, S., White, M., & Anderson, B. J. (2017). The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs. Energy & Fuels, 31(1), 140–153.

    Google Scholar 

  • Boswell, R., Yoneda, J., & Waite, W. F. (2019a). India national gas hydrate program expedition 02 summary of scientific results: Evaluation of gas hydrate-bearing pressure cores. Marine and Petroleum Geology, 108, 143–153.

    Google Scholar 

  • Bowers, G. L. (1995). Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides under compaction. SPE Drilling and Completion, 10(2), 89–95.

    Google Scholar 

  • Bowers, G. L. (2002). Detecting high overpressure. The Leading Edge, 21, 174–177.

    Google Scholar 

  • Chatterjee, R., Mukhopadhyay, M., & Paul, S. (2011). Overpressure zone under the Krishna- Godavari offshore basin: geophysical implications for natural hazard in deeper-water drilling. Natural Hazards, 57, 121–132.

    Google Scholar 

  • Chopra, S., & Huffman, A. (2006). Velocity determination for pore pressure prediction. The Leading Edge, 25, 1502–1515.

    Google Scholar 

  • Cibin, P., Pizzaferri, L., & Martera, M. Della. (2008). Seismic velocities for pore-pressure prediction. Some case histories. In: 7th International conference and exposition on petroleum geophysic, January 2008.

  • Coffin, R., Pohlman, J., Gardner, J., Downer, R., Wood, W., Hamdan, L., Walker, S., Plummer, S., Gettrust, J., & Diaz, J. (2007). Methane hydrate exploration on the mid Chilean coast: A geochemical and geophysical survey. Journal of Petroleum Science and Engineering, 56(1), 32–41.

    Google Scholar 

  • Collett, T. S. (2009). Natural Gas Hydrates: A Review, in Natural gas hydrates. Energy Resource Potential and Associated Geologic Hazards: AAPG Memoir, 89, 146–219.

    Google Scholar 

  • Collett, T., Bahk, J.-J., Baker, R., Boswell, R., Divins, D., Frye, M., Goldberg, D., Husebo, J., Koh, C., Malone, M., Morell, M., Myers, G., Shipp, C., & Torres, M. (2015). Methane hydrates in nature: Current knowledge and challenges. Journal of Chemical and Engineering Data, 60(2), 319–329.

    Google Scholar 

  • Collett, T. S., & Lee, M. W. (2012). Well log characterization of natural gas-hydrates. Petrophysics, 53(05), 348–367.

    Google Scholar 

  • Collett, T. S., Riedel, M., Cochran, J., Boswell, R., Presley, J., Kumar, P., Sathe, A. V., Sethi, A. K., Lall, M., Sibal, V. K. and NGHP Expedition 01 Scientists (2008). NGHP Expedition 01 (2006) Initial Reports, Directorate General of Hydrocarbons, Noida and Ministry of Petroleum & Natural Gas, India. 4 volumes.

  • Collett, T. S., Boswell, R., Cochran, J. R., Kumar, P., Lall, M., Mazumdar, A., Ramana, M. V., Ramprasad, T., Riedel, M., Sain, K., Sathe, A. V., Vishwanath, K., NGHP Expedition 01 Scientific Party. (2014). Geologic implications of gas hydrates in the offshore of India: results of the national gas hydrate program expedition 01. Marine and Petroleum Geology, 58, 3–28.

  • Collett, T. S., Boswell, R., Waite, W. F., Kumar, P., Mahendra, P., Roy, S. K., Chopra, K., Singh, S. K., Yamada, Y., Tenma, N., Pohlman, J., Zyrianova, M. V., Expedition, N. G. H. P., & 02 Scientific Party. (2019). India National Gas Hydrate Program Expedition 02 summary of scientific results: gas hydrate systems along the eastern continental margin of India. Marine and Petroleum Geology, 108, 39–142.

  • Das, B., & Chatterjee, R. (2018). Mapping of pore pressure, in-situ stress and brittleness in unconventional shale reservoir of Krishna-Godavari Basin. J. Nat. Gas Sci. Eng., 50, 74–89.

    Google Scholar 

  • Dasgupta, S., Chatterjee, R., & Mohanty, S. P. (2016). Prediction pore pressure and fracture pressure in Cauvery, Krishna-Godavari basin, India. Marine and Petroleum Geology, 78, 493–506.

    Google Scholar 

  • Davies, R. J., Swarbrick, R. E., Evans, R. J., Huuse, M. (2007). Birth of a mud volcano: East Java, 29 May 2006. GSA Today, 17(2), https://doi.org/10.1130/GSAT01702A.1.

  • Eaton, B. A. (1972). The effect of overburden stress on geo-pressures prediction from well-logs. Journal of Petroleum Technology, 24(8), 929–934.

    Google Scholar 

  • Eaton, B. A. (1975). The equation for geo-pressure prediction from well logs. https://doi.org/10.2118/5544-ms

  • Fertl, W. & Frost, E. (1980). Evaluation of shalyclastic reservoir rocks. Journal of Petroleum Technology 1641–1645.

  • Flemings, P. B., Stump, B. B., Finkbeiner, T., Zoback., Sayers, C. M., Johnson, G. M., & Denyer, G. (2002). Predrill pore pressure prediction using seismic data. Geophysics 67, 1286–1292.

  • Ghosh, R., & Ojha, M. (2021). Amount of gas hydrate estimated from rock physics analysis based on morphology and intrinsic anisotropy in area B, Krishna Godavari offshore basin, expedition NGHP-02. Marine and Petroleum Geology, 124, 104856.

  • Gutierrez, M. A., Braunsdorf, N. R., & Couzens, B. A. (2006). Calibration and ranking of pore-pressure prediction models. The Leading Edge, 1516–1523.

  • Haris, A., Sitorus, R. J., & Riyanto, A. (2017). Pore pressure prediction using probabilistic neural network: Case study of South Sumatra Basin. IOP Conference Series: Earth and Environmental Science, 62(1), 012021.

    Google Scholar 

  • Hashemitaheri, M., Mekarthy, S. M. R., & Cherukuri, H. (2020). Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by support vector and Gaussian process regression methods. Procedia Manufacturing, 48, 1000–1008.

    Google Scholar 

  • Hazbeh, O., Alvar, M. A., Aghdam, S. K., Ghorbani, H., Mohamadian, N., & Moghadasi, J. (2021). Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm. Journal of Petroleum and Mining Engineering, 23(1), 17–30.

    Google Scholar 

  • Hu, L., Deng, J., Zhu, H., Lin, H., Chen, Z., Deng, F. C., & Yan, C. (2013). 4093-A new pore pressure prediction method: Back propagation artificial neural network.

  • Jang, J., Dai, S., Yoneda, J., Waite, W., Stern, L., Boze, L.-G., Collett, T., & Kumar, P. (2019). Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari basin, offshore India. Marine and Petroleum Geology, 108, 537–550.

    Google Scholar 

  • Joshi, A. K., Sain, K., & Pandey, L. (2019). Gas hydrate saturation and reservoir characterization at sites NGHP-02-17 and NGHP-02-19, Krishna Godavari Basin, eastern margin of India. Marine and Petroleum Geology, 108, 595–608.

    Google Scholar 

  • Karmakar, M., & Maiti, S. (2019). Short term memory efficient pore pressure prediction via Bayesian neural networks at Bering Sea slope of IODP expedition 323. Measurement, 135, 852–868.

    Google Scholar 

  • Koch, G. S., & Link, R. F. (1971). Statistical analysis of geological data (Issue v. 2). Dover Publications. https://books.google.co.in/books?id=waxHygEACAAJ

  • Kumar, P., Collett, T. S., Boswell, R., Cochran, J. R., Lall, M., Mazumdar, A., Ramana, M. V., Ramprasad, T. V. M., Sain, K., Sathe, A. V., Vishwanath, K., & Yadav, U. S. (2014). Geologic implications of gas hydrates in the offshore of India: Krishna Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala Konkan Basin. Marine and Petroleum Geology, 58, 29–98.

    Google Scholar 

  • Kumar, P., Collett, T. S., Yadav, U. S., & Singh, J. (2019b). Formation pressure and fluid flow measurements in marine gas hydrate reservoirs, NGHP-02 expedition, offshore India. Marine and Petroleum Geology, 108, 609–618.

    Google Scholar 

  • Kumar, P., Collett, T. S., Shukla, K. M., Yadav, U. S., Lall, M. V., Vishwanath, Krishna, NGHP-02 Expedition Scientific Party (2019a). India national gas hydrate program expedition-02: Operational and technical summary. Marine and Petroleum Geology, 108, 3–38.

  • Kvenvolden, K. A. (1993). Gas hydrate- geological prospective and global change. Reviews of Geophysics, 31, 173–187.

    Google Scholar 

  • Lall, D., Vishal, V., Lall, M. V., & Ranjith, P. G. (2022). The role of heterogeneity in gas production and the propagation of the dissociation front using thermal stimulation and huff and puff in gas hydrate reservoirs. Journal of Petroleum Science and Engineering, 208, 109320.

    Google Scholar 

  • Li, J. F., Ye, J. L., Qin, X. W., Qiu, H. J., Wu, N. Y., Lu, H. L., Xie, W. W., Lu, J. A., Peng, F., Xu, Z. Q., & Lu, C. (2018). The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1), 5–16.

  • Lopez, J. L., Rappold, P.M., Ugueto, G. A., Wieseneck, J. B., & Vu, K. (2004). Integrated shared earth model: 3D pore-pressure prediction and uncertainty analysis. The Leading Edge, 52–59.

  • Lorena, A. C., & de Carvalho, A. C. (2007). Protein cellular localization prediction with support vector machines and decision trees. Computers in Biology and Medicine, 37(2), 115–125.

    Google Scholar 

  • Magara, K. (1976). Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of western Canada basin. The American Association of Petroleum Geologists Bulletin, 60(4), 554–565.

    Google Scholar 

  • Miller, T. W. (1995). New insights on natural hydraulic fractures induced by abnormally high pore pressures. American Association of Petroleum Geologists Bulletin, 79(7), 1005–1018.

    Google Scholar 

  • Moridis, G., Collett, T., Boswell, R., Kurihara, M., Reagan, M., Sloan, E., & Koh, C. (2009). Toward production from gas hydrates: Assessment of resources and technology and the role of numerical simulation. SPE Reservoir Evaluation & Engineering, 12(5), 745–771.

    Google Scholar 

  • Naveshki, M., Naghiei, A., Soltani Tehrani, P., Ahmadi Alvar, M., Ghorbani, H., Mohamadian, N., & Moghadasi, J. (2021). Prediction of bubble point pressure using new hybrid computational intelligence models. Journal of Chemical and Petroleum Engineering, 55(2), 203–222.

    Google Scholar 

  • Pandey, L., Sain, K., & Joshi, A. K. (2019). Estimate of gas hydrate saturations in the Krishna–Godavari basin, the eastern continental margin of India, results of expedition NGHP-02. Marine and Petroleum Geology, 108, 581–594.

    Google Scholar 

  • Plumb, R. A., Evans, K. F., & Engelder, T. (1991). Geophysical log responses and their correlation with bed-to-bed stress contrast in Paleozoic rocks, Appalachian Plateau, New York. Journal of Geophysical Research, 96, 14509–14528.

    Google Scholar 

  • Rai, N., Singha, D. K., Shukla, P. K., & Sain, K. (2020). Delineation of discontinuity using multi-channel seismic attributes: An implication for identifying fractures in gas hydrate sediments in offshore Mahanadi basin. Results in Geophysical Sciences, 1, 100007.

    Google Scholar 

  • Rashidi, M., & Asadi, A. (2018). An artificial intelligence approach in estimation of formation pore pressure by critical drilling data. OnePetro.

  • Sain, K., & Gupta, H. (2012). Gas hydrates in India: Potential and development. Gondwana Research, 22(2), 645–657.

    Google Scholar 

  • Sain, K., Ojha, M., Satyavani, N., Rammadas, G. A., Ramaprasad, T., Das, S. K., & Gupta, H. (2012). Gas-hydrates in Krishna-Godavari and Mahanadi basins: new data. Journal of the Geological Society of India, 79, 553–556.

    Google Scholar 

  • Saito, S. Hsiung, K. H., Sananda, Y., Moe, K., Hamada, Y., Nakamura, Y., Wu, H., Shinmoto, Y., Yamada, Y., and NGHP expedition 02 JAMSTEC science team. (2019). Gas hydrate occurrence and distribution controlled by regional geological structure off eastern India: Estimates from logging-while drilling in Area-B, National gas hydrate expedition 02. Marine and Petroleum Geology, 108, 216–225.

  • Sayers, C. M., Johnson, G. M., & Denyer, G. (2002). Predrill pore-pressure prediction using seismic data. Geophysics, 67, 1286–1292.

    Google Scholar 

  • Schoderbek, D., Martin, K. L., Howard, J., Silpngarmlert, S., & Hester, K. (2012, December). North slope hydrate field trial: CO2/CH4 exchange. In OTC arctic technology conference (pp. OTC-23725). OTC.

  • Shukla, P. K., Singha, D. K., Sain, K., et al. (2022a). Anisotropy analysis in sallow marine gas hydrate-bearing sediments- a case study from the offshore Mahanadi basin, India. Marine Geophysical Research, 43, 3.

    Google Scholar 

  • Shukla, P. K., Singha, D. K., & Sian, K. (2022b). Modeling of horizontal stress and orientation of maximum horizontal stress in gas hydrate-bearing sediments over offshore Mahanadi basin, India. Geomechanics and Geophysics for Geo-energy and Geo-resources, 8, 90.

    Google Scholar 

  • Shukla, P. K., Singha, D. K., & Yadav, P. K. (2022c). Petro-physics analysis and rock physics modeling for estimation of gas hydrate saturation: A case study in the Mahanadi offshore basin. Journal of the Geological Society of India, 98, 883–892.

    Google Scholar 

  • Shukla, K. M., Kumar, P., Yadav, U. S., NGHP-02 Science team. (2019a). Gas hydrate reservoir identification, delineation, and characterization in the Krishna–Godavari basin using subsurface geologic and geophysical data from the National Gas Hydrate Program 02 Expedition offshore India. Marine and Petroleum Geology, 108, 185–205.

  • Shukla, K. M., Kumar, P., Yadav, U. S., NGHP-02 Science team. (2019b). National gas hydrate program expedition 02: Identification of gas hydrate prospects in the Krishna–Godavari basin, Offshore India. Marine and Petroleum Geology, 108, 167–184.

  • Singha, D. K., & Chatterjee, R. (2014). Detection of overpressure zones and a statistical model for pore pressure estimation from well-logs in the Krishna-Godavari Basin, India. Geochemistry, Geophysics, Geosystems, 15(4), 1009–1020.

    Google Scholar 

  • Singha, D. K., Chatterjee, R., Sen, M. K., & Sain, K. (2014). Pore pressure prediction in gas hydrate-bearing sediments of Krishna-Godavari Basin in India. Marine Geology, 357, 1–11.

    Google Scholar 

  • Singha, D. K., Shukla, P. K., Chatterjee, R., & Sain, K. (2019). Multi-channel 2D seismic constraints on pore pressure- and vertical stress- related gas hydrate in the deep offshore of the Mahanadi Basin, India. Journal of Asian Earth Science, 180, 103882.

    Google Scholar 

  • Sloan Jr., E. D., Koh, C. A., & Koh, C. A. (2007). Clathrate hydrates of natural gases. In: Clathrate hydrates of natural gases. https://doi.org/10.1201/9781420008494

  • Tepцaги, К., Пeк, P. Б., & Mecpи, Г. (1996). Mexaникa гpyнтoв в инжeнepнoй пpaктикe.pdf (Soil Mechanics in Engineering Practice). In John wiley & sons (p. 534).

  • Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., Morley, C. K., & Damit, A. R. (2009). Origin of overpressure and pore-pressure prediction in the Baram province. Brunei. AAPG Bull., 93(1), 51–74.

  • Uchida, S., Soga, K., & Yamamoto, K. (2012). Critical state soil constitutive model for methane gas hydrate soil. Journal of Geophysical Research, 117, 1–12.

    Google Scholar 

  • Uchida, S., Seol, Y., & Yamamoto, K. (2019). Geomechanical behavior of gas hydrate-bearing reservoir during gas production. Search Discov Article, 42428. https://doi.org/10.1306/42428Uchida2019

  • Vishal, V., Lall, D., Sarna, S., Sharma, A., & Ranjith, P. G. (2020). Sensitivity analysis of methane hydrate-bearing in Class 3 reservoirs during thermal injection. Journal of Petroleum Science and Engineering, 195, 107575.

    Google Scholar 

  • Wang, Y., Ma, H., Fu, W. (2010). Formation pressure prediction based on hybrid genetic algorithm. IEEE https://doi.org/10.1109/ICOSP.2010.5656925

  • Yadav, U. S., Shukla, K. M., Ojha, M., Kumar, P., & Shankar, U. (2019). Assessment of gas hydrate accumulations using velocities derived from vertical seismic profiles and acoustic log data in Krishna-Godavari Basin, India. Marine and Petroleum Geology, 108, 551–561.

    Google Scholar 

  • Yamamoto, K., Terao, Y., Fujii, T., Ikawa, T., Seki, M., Matsuzawa, M., & Kanno, T. (2014, May). Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough. In Offshore technology conference (p. D031S034R004). OTC.

  • Yu, H., Chen, G., & Gu, H. (2020). A machine learning methodology for multivariate pore-pressure prediction. Computers & Geosciences, 143, 104548.

  • Zhang, J. J. (2011). Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth Science Reviews, 108(1–2), 50–63.

    Google Scholar 

  • Zhang, G., Davoodi, S., Band, S. S., & Ghorbani, H. (2022). A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques. Energy Reports, 8, 2233–2247.

  • Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., & Wiprut, D. J. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Science, 40, 1049–1076.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude and acknowledgment for the data support provided to the Gas Hydrate Research and Technology Centre (GHRTC), Oil and Natural Gas Corporation (ONGC), and the Department of Science and Technology (DST) for their funded project (Project code: RD/0119-DST0007-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Shukla.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A

Appendix A

The computed conversion relation between the sonic transit time and velocity is given as follows:

$$DT=\frac{{10}^{6}}{V}$$
(17)

where DT is in μs/ftFootnote 1 and sonic velocity, V, is in ft*/sec.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P.K., Lall, D. & Vishal, V. A Robust Mechanistic Model for Pore Pressure Prediction from Petrophysical Logs Aided by Machine Learning in the Gas Hydrate-Bearing Sediments over the Offshore Krishna–Godavari Basin, India. Nat Resour Res 32, 2727–2752 (2023). https://doi.org/10.1007/s11053-023-10262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10262-9

Keywords

Navigation