Skip to main content
Log in

Integrated Petrophysical and Heterogeneity Assessment of the Karstified Fahliyan Formation in the Abadan Plain, Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the petrophysical properties and heterogeneity rate of the Fahliyan Formation in the Abadan Plain, southwestern Iran. Thin section slides, core analysis results, scanning electron microscope (SEM), and computed tomography (CT) images were studied in association with petrophysical log data to describe pore types, hydraulic flow units, and log facies in the Fahliyan reservoir. Our analysis revealed that the meteorically dissolved mud dominated low energy lagoonal facies (Layer-3) are the best reservoir intervals in the Fahliyan Formation. In contrast, intensively cemented, and physically and chemically compacted facies formed the tight zones in this reservoir (Layer-1). Comparison of depositional texture and sedimentary setting with the flow units and reservoir quality clearly revealed the major role of diagenesis in reservoir quality of the Fahliyan Formation. Heterogeneity assessment through statistical analysis revealed that Layer-1 is the most heterogeneous unit in the Fahliyan Formation, while Layer-2 and Layer-3 exhibit relatively similar behavior, with very close heterogeneity values. However, porosity distribution histograms showed that pore types and network are more heterogeneous in Layer-3, presenting multimodal distribution. Image log-derived porosity distribution provided by thin sections, SEM and CT images, and velocity deviation log showed that pores are homogeneous in Layer-1 and heterogeneous in Layer-3, in light of extensive dissolution and development of molds, vugs, and solution enlarged fractures. Finally, different sources of heterogeneity were considered by combining various datasets including petrophysical logs, core analysis data, and geological attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Notes

  1. 1 mD \(\cong {10}^{-15}\) m2.

  2. 1 psi = 6894.76 Pa.

  3. °C = (°F–32) × 5/9.

  4. 1 µS = 0.000001 1/Ω.

  5. 1 ft = 0.3048 m.

References

  • Abdollahie-Fard, I., Braathen, A., Mokhtari, M., & Alavi, S. A. (2006). Interaction of the Zagros fold-thrust belt and the Arabian-type, deep-seated folds in the Abadan plain and the Dezful embayment SW Iran. Petroleum Geoscience, 12(4), 347–362.

    Article  Google Scholar 

  • Abdulelah, H., Mahmood, S., & Hamada, G. (2018). Hydraulic flow units for reservoir characterization: A successful application on arab-d carbonate. IOP Conference Series: Materials Science and Engineering, 380(1), 12020.

    Article  Google Scholar 

  • Adabi, M. H., Salehi, M. A., & Ghabeishavi, A. (2010). Depositional environment, sequence stratigraphy and geochemistry of lower cretaceous carbonates (Fahliyan formation), south-west Iran. Journal of Asian Earth Sciences, 39(3), 148–160.

    Article  Google Scholar 

  • Ahr, W. M. (2008). Geology of carbonate reservoirs: The identification. Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks, DOI, 10, 9780470370650.

    Google Scholar 

  • Ahr, W. M. (2010). Geology of carbonate: The identification, description, and characterization of hydrocarbon reservoirs in carbonate rocks. Wiley.

    Google Scholar 

  • Akbar, M., Vissapragada, B., Alghamdi, A. H., Allen, D., Herron, M., Carnegie, A., Dutta, D., Olesen, J.-R., Chourasiya, R. D., Logan, D., et al. (2000). A snapshot of carbonate reservoir evaluation. Oilfield Review, 12(4), 20–21.

    Google Scholar 

  • Aliakbardoust, E., & Rahimpour-Bonab, H. (2013). Effects of pore geometry and rock properties on water saturation of a carbonate reservoir. Journal of Petroleum Science and Engineering, 112, 296–309.

    Article  Google Scholar 

  • Alizadeh, M., Movahed, Z., & Junin, R. B. (2015a). Porosity analysis using image logs. Environmental Sciences, 10, 326–337.

    Google Scholar 

  • Alizadeh, M., Movahed, Z., Junin, R. B., & Mohsin, R. (2015b). How to measure the various types of geologic porosities in oil and gas reservoirs using image logs. Journal of Advanced Research in Materials Science, 4, 14–30.

    Google Scholar 

  • Alpay, O. A. (1972). A practical approach to defining reservoir heterogeneity. Journal of Petroleum Technology, 24(07), 841–848.

    Article  Google Scholar 

  • Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., Keelan, D. K., & others. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In SPE Annual Technical Conference and Exhibition.

  • Anselmetti, F. S., & Eberli, G. P. (1999). The velocity-deviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. AAPG Bulletin, 83(3), 450–466.

    Google Scholar 

  • Aplin, G. F., & Sapru, A. K. (2001). Characterisation of carbonate reservoir heterogeneity using probe permeability images, petrography and borehole image log data. In Paper SCA 2001–41, Proc. Int. Symp. Of the Society of Core Analysts (pp 17–19).

  • Aqrawi, A. A. M., & Badics, B. (2015). Geochemical characterisation, volumetric assessment and shale-oil/gas potential of the middle Jurassic-lower cretaceous source rocks of NE Arabian plate. GeoArabia, 20(3), 99–140.

    Article  Google Scholar 

  • Assadi, A., Honarmand, J., Moallemi, S.-A., & Abdollahie-Fard, I. (2016). Depositional environments and sequence stratigraphy of the Sarvak formation in an oil field in the Abadan plain SW Iran. Facies, 62(4), 1–22.

    Article  Google Scholar 

  • Bhattacharya, S., Carr, T. R., & Pal, M. (2016). Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus Shale, USA. Journal of Natural Gas Science and Engineering, 33, 1119–1133.

    Article  Google Scholar 

  • Bjørlykke, K. (2014). Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301, 1–14.

    Article  Google Scholar 

  • Burrowes, A. M., Moss, A. K., Sirju, C., & Pritchard, T. N. (2010). Improved permeability prediction in heterogenous carbonate formations. In SPE EUROPEC/EAGE Annual Conference and Exhibition.

  • Cannon, S. (2015). Petrophysics: a practical guide. Wiley.

    Book  Google Scholar 

  • Chehrazi, A., Rezaee, R., & Rahimpour, H. (2011). Pore-facies as a tool for incorporation of small-scale dynamic information in integrated reservoir studies. Journal of Geophysics and Engineering, 8(2), 202–224.

    Article  Google Scholar 

  • Ebanks Jr, W. J. (1987). Flow unit concept-integrated approach to reservoir description for engineering projects. AAPG (Am. Assoc. Pet. Geol.) Bull.;(United States), 71(CONF-870606-).

  • Elkateb, T., Chalaturnyk, R., & Robertson, P. K. (2003). An overview of soil heterogeneity: Quantification and implications on geotechnical field problems. Canadian Geotechnical Journal, 40(1), 1–15.

    Article  Google Scholar 

  • Elkhateeb, A., Rezaee, R., & Kadkhodaie, A. (2021). A new integrated approach to resolve the saturation profile using high-resolution facies in heterogenous reservoirs. Petroleum, 8(3), 318–331.

    Article  Google Scholar 

  • Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island NWT. Bulletin of Canadian Petroleum Geology, 19(4), 730–781.

    Google Scholar 

  • Enayati-Bidgoli, A. H., & Rahimpour-Bonab, H. (2016). A geological based reservoir zonation scheme in a sequence stratigraphic framework: A case study from the Permo-Triassic gas reservoirs, Offshore Iran. Marine and Petroleum Geology, 73, 36–58.

    Article  Google Scholar 

  • Enayati-Bidgoli, A. H., Rahimpour-Bonab, H., & Mehrabi, H. (2014). Flow unit characterisation in the Permian-Triassic carbonate reservoir succession at South pars Gasfield, offshore Iran. Journal of Petroleum Geology, 37(3), 205–230.

    Article  Google Scholar 

  • Fitch, P., Lovell, M., Davies, S., Pritchard, T., & Harvey, P. (2015). An integrated and quantitative approach to petrophysical heterogeneity. Marine and Petroleum Geology, 63, 82–96.

    Article  Google Scholar 

  • Flügel, E. (2010). Microfacies of carbonate rocks: Analysis, interpretation and application. Springer.

    Book  Google Scholar 

  • Hadi, F., Albehadili, A., Jassim, A., & Almahdawi, F. (2019). Development of artificial neural networks and multiple regression analysis for estimating of formation permeabilityhttps://doi.org/10.2118/195502-MS.

  • Hadi, F. (2018). Geomechanical characterizations and correlations to reduce uncertainties of carbonate reservoir analysis. Missouri University of Science and Technology.

    Google Scholar 

  • Hartmann Dan, J., & Beaumont Edward, A. (1999). Prediction reservoir systems quality and performance in exploring oil and gas traps. AAPG Special Publication. https://doi.org/10.1306/TrHbk624C9

    Article  Google Scholar 

  • Hilchie, D. W. (1982). Advanced well log interpretation. Douglas W. Hilchie. Inc, Golden Colorado, (p. 347).

  • Iqbal, M. A., Salim, A. M. A., Baioumy, H. M., Gaafar, G. R., & Wahid, A. (2017). Porosity, permeability and pore throat size distribution of Nyalau formation, Bintulu area, Sarawak basin. Malaysia. J. Appl. Environ. Biol. Sci, 7(10), 151–158.

    Google Scholar 

  • Jamalian, M., & Adabi, M. H. (2015). Geochemistry, microfacies and diagenetic evidences for original aragonite mineralogy and open diagenetic system of lower Cretaceous carbonates Fahliyan Formation (Kuh-e Siah area, Zagros Basin, South Iran). Carbonates and Evaporites, 30(1), 77–98.

    Article  Google Scholar 

  • Jamalian, M., Adabi, M. H., Moussavi, M. R., Sadeghi, A., Baghbani, D., & Ariyafar, B. (2011). Facies characteristic and paleoenvironmental reconstruction of the Fahliyan formation, lower Cretaceous, in the Kuh-e Siah area, Zagros Basin, southern Iran. Facies, 57(1), 101–122.

    Article  Google Scholar 

  • James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG Bulletin, 49(12), 2182–2245.

    Google Scholar 

  • Jensen, J., Lake, L. W., Corbett, P. W. M., & Goggin, D. (2000). Statistics for petroleum engineers and geoscientists (Vol. 2). Gulf Professional Publishing.

    Google Scholar 

  • Kadkhodaie, A., & Kadkhodaie, R. (2018). A review of reservoir rock typing methods in carbonate reservoirs: Relation between geological, seismic, and reservoir rock types. Iranian Journal of Oil & Gas Science and Technology, 7(4), 13–35.

    Google Scholar 

  • Kolodzie. (1980). Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in spindle field, Colorado. In SPE Annual Technical Conference and Exhibition.

  • Kosari, E., Kadkhodaie, A., Bahroudi, A., Chehrazi, A., & Talebian, M. (2017). An integrated approach to study the impact of fractures distribution on the Ilam-Sarvak carbonate reservoirs: A case study from the Strait of Hormuz, the Persian Gulf. Journal of Petroleum Science and Engineering, 152, 104–115.

    Article  Google Scholar 

  • Lake, L. W., & Jensen, J. L. (1991). A review of heterogeneity measures used in reservoir characterization. In Situ, 15(4).

  • Lasemi, Y., & Kondroud, K. N. (2008). Sequence stratigraphic control on prolific HC reservoir development Southwest Iran. Oil & Gas Journal, 106(1), 34–38.

    Google Scholar 

  • Lucia, F. J. (2007). Carbonate reservoir characterization. Journal of Petroleum Technology. https://doi.org/10.2118/82071-MS

    Article  Google Scholar 

  • Maldar, R., Ranjbar-Karami, R., Behdad, A., & Bagherzadeh, S. (2022). Reservoir rock typing and electrofacies characterization by integrating petrophysical properties and core data in the Bangestan reservoir of the Gachsaran oilfield, the Zagros basin Iran. Journal of Petroleum Science and Engineering, 210, 110080.

    Article  Google Scholar 

  • Maschio, C., & Schiozer, D. S. (2003). A new upscaling technique based on Dykstra-Parsons coefficient: Evaluation with streamline reservoir simulation. Journal of Petroleum Science and Engineering, 40(1–2), 27–36. https://doi.org/10.1016/S0920-4105(03)00060-3

    Article  Google Scholar 

  • Mehrabi, H., & Bagherpour, B. (2022). Scale, origin, and predictability of reservoir heterogeneities in shallow-marine carbonate sequences: A case from Cretaceous of Zagros Iran. Journal of Petroleum Science and Engineering, 214, 110571.

    Article  Google Scholar 

  • Mehrabi, H., Ranjbar-Karami, R., & Roshani-Nejad, M. (2019). Reservoir rock typing and zonation in sequence stratigraphic framework of the Cretaceous Dariyan Formation Persian Gulf. Carbonates and Evaporites, 34(4), 1833–1853.

    Article  Google Scholar 

  • Mehrabi, H., Rhimpour-Bonab, H., Hajikazemi, E., & Esrafili-Dizaji, B. (2015). Geological reservoir characterization of the Lower Cretaceous Dariyan Formation (Shu’aiba equivalent) in the Persian Gulf, southern Iran. Marine and Petroleum Geology, 68, 132–157.

    Article  Google Scholar 

  • Mohaghegh, S., Arefi, R., Ameri, S., & Hefner, M. H. (1994). A methodological approach for reservoir heterogeneity characterization using artificial neural networks. In SPE Annual Technical Conference and Exhibition.

  • Moore, C. H. (2001). Carbonate reservoirs porosity evolution and diagenesis in a sequence stratigraphic framework. Elsevier.

    Google Scholar 

  • Moore, C. H., & Wade, W. J. (2013). Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework (Vol. 67). Newnes publisher.

    Google Scholar 

  • Motiei, H. (1993). Geology of Iran: stratigraphy of Zagros. Geological Survey of Iran, Tehran, (pp. 1–536).

  • Mukherjee, S., Rajabi, M., Esterle, J., & Copley, J. (2020). Subsurface fractures, in-situ stress and permeability variations in the Walloon Coal Measures, eastern Surat Basin, Queensland Australia. International Journal of Coal Geology, 222, 103449.

    Article  Google Scholar 

  • Nabih, M. (2021). Reliability of velocity-deviation logs for shale content evaluation in clastic reservoirs: A case study Egypt. Arabian Journal of Geosciences, 14(6), 1–11.

    Article  Google Scholar 

  • Newberry, B. M., Grace, L. M., & Stief, D. O. (1996). Analysis of carbonate dual porosity systems from borehole electrical images.In Permian Basin Oil and Gas Recovery Conference.

  • Noori, H., Mehrabi, H., Rahimpour-Bonab, H., & Faghih, A. (2019). Tectono-sedimentary controls on Lower Cretaceous carbonate platforms of the central Zagros, Iran: An example of rift-basin carbonate systems. Marine and Petroleum Geology, 110, 91–111.

    Article  Google Scholar 

  • Opuwari, M., Amponsah-Dacosta, M., Mohammed, S., & Egesi, N. (2020). Delineation of sandstone reservoirs of Pletmos Basin offshore South Africa into flow units using core data. South African Journal of Geology, 123(4), 479–492.

    Article  Google Scholar 

  • Opuwari, M., Bialik, O. M., Taha, N., & Waldmann, N. D. (2021). The role of detrital components in the petrophysical parameters of Paleogene calcareous-dominated hemipelagic deposits. Arabian Journal of Geosciences, 14(11), 1–13.

    Article  Google Scholar 

  • Opuwari, M., & Dominick, N. (2021). Sandstone reservoir zonation of the north-western Bredasdorp Basin South Africa using core data. Journal of Applied Geophysics, 193, 104425.

    Article  Google Scholar 

  • Opuwari, M., Ubong, M. O., Jamjam, S., & Magoba, M. (2022). The impact of detrital minerals on reservoir flow zones in the Northeastern Bredasdorp Basin, South Africa using core data. Minerals, 12(8), 1009.

    Article  Google Scholar 

  • Orodu, O. D., Tang, Z., & Fei, Q. (2009). Hydraulic (flow) unit determination and permeability prediction: A case study of block Shen-95, Liaohe Oilfield North-East China. Journal of Applied Sciences, 9(10), 1801–1816.

    Article  Google Scholar 

  • Pate, L. C. (2012). Textural analysis of FMI logs to determine lithofacies in the early paddock member.

  • Perez, H. H., Datta-Gupta, A., & Mishra, S. (2005). The role of electrofacies, lithofacies, and hydraulic flow units in permeability predictions from well logs: a comparative analysis using classification trees. In SPE Annual Technical Conference and Exhibition.

  • Purcell, W. R. (1949). Capillary pressures-their measurement using mercury and the calculation of permeability therefrom. Journal of Petroleum Technology, 1(02), 39–48.

    Article  Google Scholar 

  • Rahimpour-Bonab, H., & Aliakbardoust, E. (2014). Pore facies analysis: Incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf. Journal of Geophysics and Engineering, 11(3), 35008.

    Article  Google Scholar 

  • Rajabi, M., & Tingay, M. (2013). Applications of intelligent systems in petroleum geomechanics-prediction of geomechanical properties in different types of sedimentary rocks. In International EAGE Workshop on Geomechanics and Energy (pp. cp–369).

  • Rajabi, M., Sherkati, S., Bohloli, B., & Tingay, M. (2010). Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain. Iran. Tectonophysics, 492(1–4), 192–200.

    Article  Google Scholar 

  • Ranjbar-Karami, R., Rajabi, M., Ghavidel, A., & Afroogh, A. (2019). Contemporary tectonic stress pattern of the Persian Gulf Basin Iran. Tectonophysics, 766, 219–231.

    Article  Google Scholar 

  • Ranjbar-Karami, R., Tavoosi Iraj, P., & Mehrabi, H. (2021). Integrated rock typing and pore facies analyses in a heterogeneous carbonate for saturation height modelling, a case study from Fahliyan Formation, the Persian Gulf. Journal of Petroleum Exploration and Production, 11(4), 1577–1595.

    Article  Google Scholar 

  • Rowland Fitch, P. J. (2010). Heterogeneity in the Petrophysical Properties of Carbonate.

  • Saadatinejad, M. R., & Sarkarinejad, K. (2011). Application of the spectral decomposition technique for characterizing reservoir extensional system in the Abadan Plain, southwestern Iran. Marine and Petroleum Geology, 28(6), 1205–1217.

    Article  Google Scholar 

  • Schlumberger. (2013). Log interpretation chartbook. Schlumberger.

  • Sen, S., Abioui, M., Ganguli, S. S., Elsheikh, A., Debnath, A., Benssaou, M., & Abdelhady, A. A. (2021). Petrophysical heterogeneity of the early Cretaceous Alamein dolomite reservoir from North Razzak oil field, Egypt integrating well logs, core measurements, and machine learning approach. Fuel, 306, 121698.

    Article  Google Scholar 

  • Shang, X., Hou, J., & Dong, Y. (2022). Genesis of reservoir heterogeneity and its impacts on petroleum exploitation in beach-bar sandstone reservoirs: A case study from the Bohai Bay Basin China. Energy Geoscience, 3(1), 35–48.

    Article  Google Scholar 

  • Sharland, P. R., Archer, D. M., Casey, R. B., Davies, S. H., Hall, A. P., Heward, A. D., Horbury, A. D., & Simmons, M. D. (2001). Arabian Plate Sequence Stratigraphy. In GeoArabia Special Publications 2 (p. 371).

  • Shedid, S. A., & Almehaideb, R. A. (2003). Enhanced reservoir description of heterogeneous carbonate reservoirs. Journal of Canadian Petroleum Technology. https://doi.org/10.2118/03-07-01

    Article  Google Scholar 

  • Shirmohamadi, M., Kadkhodaie, A., Rahimpour-Bonab, H., & Faraji, M. A. (2017). Seismic velocity deviation log: An effective method for evaluating spatial distribution of reservoir pore types. Journal of Applied Geophysics, 139, 223–238.

    Article  Google Scholar 

  • Tavoosi Iraj, P., Mehrabi, H., Rahimpour-Bonab, H., & Ranjbar-Karami, R. (2021). Quantitative analysis of geological attributes for reservoir heterogeneity assessment in carbonate sequences; a case from Permian-Triassic reservoirs of the Persian Gulf. Journal of Petroleum Science and Engineering, 200, 108356.

    Article  Google Scholar 

  • Tiab, D., & Donaldson, E. C. (2015). Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties. Gulf professional publishing.

    Google Scholar 

  • Usman, M., Siddiqui, N. A., Mathew, M., Zhang, S., El-Ghali, M. A. K., Ramkumar, M., Jamil, M., & Zhang, Y. (2020). Linking the influence of diagenetic properties and clay texture on reservoir quality in sandstones from NW Borneo. Marine and Petroleum Geology, 120, 104509.

    Article  Google Scholar 

  • Wang, L., He, Y., Peng, X., Deng, H., Liu, Y., & Xu, W. (2020). Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng IV member, Gaoshiti-Moxi Area, Sichuan Basin, SW China. Marine and Petroleum Geology, 111, 44–65.

    Article  Google Scholar 

  • Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1), 41–70.

    Article  Google Scholar 

  • Yang, F., Ning, Z. F., Kong, D. T., & Liu, H. Q. (2013). Pore structure of shales from high pressure mercury injection and nitrogen adsorption method. Natural Gas Geoscience, 24(3), 450–455.

    Google Scholar 

  • Yarmohammadi, S., Kadkhodaie, A., & Hosseinzadeh, S. (2020). An integrated approach for heterogeneity analysis of carbonate reservoirs by using image log based porosity distributions, NMR T2 curves, velocity deviation log and petrographic studies: A case study from the South Pars gas field, Persian Gulf Basin. Journal of Petroleum Science and Engineering, 192, 107283.

    Article  Google Scholar 

  • Ye, S.-J., & Rabiller, P. (2005). Automated electrofacies ordering. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 46(06), 409–423.

    Google Scholar 

  • Zhao, G., Zhu, J., & Guan, L. (2008). Method of applying capillary pressure data to calculate initial oil saturation. Journal of China University of Petroleum (Edition of Natural Science), 4, 12.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the NIOC for permission to publish the data. The authors express their sincere gratitude to Prof. John Carranza, the editor-in-chief of Journal of Natural Resources Research, for editorial handling. Dr. Farqad Ali Hadi and two anonymous reviewers are thanked for their time and constructive comments on this paper.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Tavoosi Iraj.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavoosi Iraj, P., Rajabi, M. & Ranjbar-Karami, R. Integrated Petrophysical and Heterogeneity Assessment of the Karstified Fahliyan Formation in the Abadan Plain, Iran. Nat Resour Res 32, 1067–1092 (2023). https://doi.org/10.1007/s11053-023-10175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10175-7

Keywords

Navigation