Skip to main content
Log in

Pore Structure Characteristics and Evaluation of Carbonate Reservoir: A Case Study of the Lower Carboniferous in the Marsel Exploration Area, Chu-Sarysu Basin

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The pore structure of a carbonate reservoir determines the fluidity and storage characteristics of hydrocarbon, and it is vital for reservoir evaluation and oil and gas production. The Visean and Serpukhovian carbonate reservoirs in the Marsel exploration area of the Chu-Sarysu Basin possess a complex lithology and pore structure, which significantly affect production efficiency. The pore structure of the reservoirs was investigated in this study via X-ray diffraction, conventional petrophysical measurements, cast thin section analysis, scanning electron microscopy (SEM), imaging logging, and high-pressure mercury injection (HPMI). The findings show that the lithology in this area mainly comprises fine-grained limestone, bioclastic limestone, and silty limestone; moreover, the mineral assemblage in this region is markedly different. The types of carbonate reservoir pore spaces are complex and diverse. Primary pores are mainly biological cavity pores with small pore size, mostly isolated individuals, poor connectivity, and weak percolation capacity. Secondary dissolution pores, which are dominated by intergranular dissolution pores, intragranular dissolution pores, and microfractures, are the dominant storage spaces in the Carboniferous carbonate reservoirs. Through an innovative approach of combining imaging logging and cast thin section analysis, it was concluded that mainly three types of fractures exist, namely conductivity fractures, fissures, and resistive fractures. Moreover, structural fractures in this area are relatively developed, which substantially increases the percolation capacity of the reservoirs and it is conducive to oil and gas flow. However, some structural fractures are filled with calcite, destroying the effectiveness of the fractures and reducing the percolation capacity. Based on capillary pressure curves, the samples were divided into three types, of which the physical properties decrease in the order of type I > type III > type II. The fractal dimensions obtained from HPMI and SEM data characterize the complexity of the reservoir microstructure in the study area. The formation of high-porosity and high-permeability zones was caused by quasi-syngenetic dolomitization and syngenetic–quasi-syngenetic dissolution. In this study, the pore structure of carbonate reservoirs in the area was evaluated quantitatively, which is highly significant to improving oil and gas recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Notes

  1. * 1 mD = 1 millidarcy = 9.86923 × 10−15 m2.

References

  • Aghli, G., Moussavi-Harami, R., & Mohammadian, R. (2018). Reservoir heterogeneity and fracture parameter determination using electrical image logs and petrophysical data (a case study, carbonate Asmari Formation, Zagros Basin, SW Iran). Petroleum Science, 17(1), 19.

    Google Scholar 

  • Brandano, M., & Civitelli, G. (2007). Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: A modern example of mixed carbonate–siliciclastic sedimentation. Sedimentary Geology, 201(3), 286–301.

    Article  Google Scholar 

  • Brunet, M. F., Volozh, Y. A., & Antipov, M. P. (1999). The geodynamic evolution of the Precaspian Basin Kazakhstan along a north–south section. Tectonophysics, 313(1–2), 85–106.

    Article  Google Scholar 

  • Bykadorov, V. A., Bush, V. A., Fedorenko, O. A., Filippova, I. B., Miletenko, N. V., Puchkov, V. N., Smirnov, A. V., & Volozh, B. U. A. (2003). Ordovician—permian palaeogeography of central eurasia: Development of palaeozoic petroleum-bearing basins. Journal of Petroleum Geology, 26(3), 325–350.

    Article  Google Scholar 

  • Chalmers, G. R., & Bustin, R. M. (2008). Lower Cretaceous gas shales in northeastern British Columbia, part I: Geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(1), 1–21.

    Article  Google Scholar 

  • Chang, J. Q., Fan, X. D., Jiang, Z. X., Wang, X. M., Chen, L., Li, J. T., Zhu, L., Wan, C. X., & Chen, Z. X. (2021). Differential impact of clay minerals and organic matter on pore structure and its fractal characteristics of marine and continental shales in China. Apply Clay Science, 216, 106334.

    Article  Google Scholar 

  • Chen, L. P., Zhang, H., Cai, Z. X., Hao, F., Xue, Y. F., & Zhao, W. S. (2022). Petrographic, mineralogical and geochemical constraints on the fluid origin and multistage karstification of the middle-lower Ordovician carbonate reservoir, NW Tarim Basin, China. Journal of Petroleum Science and Engineering, 208, 109561.

    Article  Google Scholar 

  • Cook, H. E., Zhemchuzhnikov, V. G., Zempolich, W. G., Lehmann P. J., & Zorin A. Y. (2007). Devonian and carboniferous carbonate platform facies in the Bolshoi Karatau, southern Kazakhstan: Outcrop analogs for coeval carbonate oil and gas fields in the north Caspian Basin. AAPG, New York. https://doi.org/10.1306/1205837St55372

  • Degiorgio, V., & Mandelbrot, B. B. (1984). The fractal geometry of nature. Mathematical Association of America, 91(9), 594.

    Google Scholar 

  • Dou, W. C., Liu, L. F., Wu, K. J., Xu, Z. J., Liu, X. X., & Feng, X. (2018). Diagenetic heterogeneity, pore throats characteristic and their effects on reservoir quality of the Upper Triassic tight sandstones of Yanchang Formation in Ordos Basin, China. Marine and Petroleum Geology, 98, 243–257.

    Article  Google Scholar 

  • Fu, H. J., Tang, D. Z., Xu, T., Tao, S., Li, S., Yin, Z. Y., Chen, B. L., Zhang, C., & Wang, L. L. (2017). Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel, 193(1), 254–264.

    Article  Google Scholar 

  • Haines, T. J., Michie, E., Neilson, J. E., & Healy, D. (2016). Permeability evolution across carbonate hosted normal fault zones. Marine and Petroleum Geology, 72, 62–82.

    Article  Google Scholar 

  • Hamd, J., Cerepi, A., Swennen, R., Loisy, C., Galaup, S., & Pigot, L. (2022). Sedimentary and diagenetic effects on reservoir properties of Upper Cretaceous Ionian Basin and Kruja platform carbonates, Albania. Marine and Petroleum Geology, 138, 105549.

    Article  Google Scholar 

  • Hassan, N. M., Yan, D. T., Nayima, H., Umar, A., & Riaz, H. R. (2020). Pore structure characteristics and fractal dimension analysis of low rank coal in the Lower Indus Basin, SE Pakistan. Journal of Natural Gas Science and Engineering, 77, 103231.

    Article  Google Scholar 

  • He, J. H., Ding, W. L., Li, A., Sun, Y. X., Dai, P., Yin, S., Chen, E., & Gu, Y. (2016). Quantitative microporosity evaluation using mercury injection and digital image analysis in tight carbonate rocks: A case study from the Ordovician in the Tazhong Palaeouplift, Tarim Basin, NW China. Journal of Natural Gas Science and Engineering, 34, 627–644.

    Article  Google Scholar 

  • Hu, T., Pang, X. Q., Jiang, F. J., & Zhang, C. X. (2022a). Dynamic continuous hydrocarbon accumulation (DCHA): Existing theories and a new unified accumulation model. Earth-Science Reviews, 232, 104109.

    Article  Google Scholar 

  • Hu, T., Pang, X. Q., Xu, T. W., & Li, C. R. (2022b). Identifying the key source rocks in heterogeneous saline lacustrine shales: Paleogene shales in the Dongpu depression, Bohai Bay Basin, eastern China. AAPG Bulletin, 106(6), 1325–1356.

    Article  Google Scholar 

  • Hu, Y. B., Guo, Y. H., Shangguan, J. W., Zhang, J. J., & Song, Y. (2020). Fractal characteristics and model applicability for pores in tight gas 2 sandstone reservoirs: A case study of the Upper Paleozoic in Ordos. Energy and Fuels, 34(12), 16059–16072.

    Article  Google Scholar 

  • Jaireth, S., & Hustone, D. (2010). Metal endowment of cratons, terranes and districts: Insights from a quantitative analysis of regions with giant and super-giant deposits. Ore Geology Reviews, 38(3), 288–303.

    Article  Google Scholar 

  • Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.

    Article  Google Scholar 

  • Jiang, F., Chen, D., Chen, J., Li, Q., & Dai, J. (2016). Fractal analysis of shale pore structure of continental shale gas reservoir in the Ordos Basin, NW China. Energy and Fuels, 30(6), 4676–4689.

    Article  Google Scholar 

  • Lai, J., Li, D., Wang, G. W., Xiao, C. W., Hao, X. L., Luo, Q. Y., Lai, L. B., & Qin, Z. Q. (2018a). Earth stress and reservoir quality evaluation in high and steep structure: The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101, 43–54.

    Article  Google Scholar 

  • Lai, J., & Wang, G. W. (2015). Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques. Journal of Natural Gas Science and Engineering, 24, 185–196.

    Article  Google Scholar 

  • Lai, J., Wang, G. W., Wang, S., Cao, J. T., Li, M., Pang, X. J., Han, C., Fan, X. Q., Yang, L., He, Z. B., & Qin, Z. Q. (2018b). A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95, 139–166.

    Article  Google Scholar 

  • Li, C. Y., Dai, W. H., Luo, B. F., Pin, J., Liu, Y. S., & Zhang, Y. (2020a). New fractal-dimension-based relation model for estimating absolute permeability through capillary pressure curves. Journal of Petroleum Science and Engineering, 196, 107672.

    Article  Google Scholar 

  • Li, K. W. (2010). Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. Journal of Petroleum Science and Engineering, 73(1–2), 20–26.

    Article  Google Scholar 

  • Li, P., Zheng, M., Bi, H., Wu, S. T., & Wang, X. R. (2017). Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China. Journal of Petroleum Science and Engineering, 149(20), 665–674.

    Article  Google Scholar 

  • Li, Q. Y., & Li, Q. (2019). Diagenesis and its effects on the reservoir of Leikoupo formation in Longmendong area of Southwestern Sichuan. Science Technology and Engineering, 19(30), 103–112.

    Google Scholar 

  • Li, Q. W., Pang, X. Q., Li, B. Y., Zhao, Z. F., Shao, X. H., Zhang, X., Wang, Y. W., & Li, W. (2018). Discrimination of effective source rocks and evaluation of the hydrocarbon resource potential in Marsel, Kazakhstan. Journal of Petroleum Science and Engineering, 160, 194–206.

    Article  Google Scholar 

  • Li, W. Q., Mu, L. X., Zhao, L., Li, J. X., Wang, S. Q., Fan, Z. F., Shao, D. L., Li, C. H., Shan, F. C., Zhao, W. Q., & Sun, M. (2020b). Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin. Petroleum Exploration and Development, 47(5), 958–971.

    Article  Google Scholar 

  • Liu, X. P., Lai, J., Fan, X. C., Shu, H. L., Wang, G. C., Ma, X. Q., Liu, M. C., Guan, M., & Luo, Y. F. (2020). Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin, China. Marine and Petroleum Geology, 114, 104228.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1975). Stochastic models for the Earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proceedings of the National Academy of Sciences, 72(10), 3825–3828.

    Article  Google Scholar 

  • Mastalerz, M., Hampton, L. B., Drobniak, A., & Loope, H. (2017). Significance of analytical particle size in low-pressure N2 and CO2 adsorption of coal and shale. International Journal of Coal Geology, 178(1), 122–131.

    Article  Google Scholar 

  • Meng, Z. Y., Xu, G. S., Liu, Y., Yang, C., Yuan, H. F., & Liang, J. J. (2015). Hydrocarbon accumulation conditions of the weathering crust paleokarst gas reservoirs of Leikoupo Formation, west Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(01), 70–79.

    Google Scholar 

  • Pan, Y. S., Huang, Z. L., Guo, X. B., Liu, B. C., Wang, G. Q., & Xu, X. F. (2022). Study on the pore structure, fluid mobility, and oiliness of the lacustrine organic-rich shale affected by volcanic ash from the Permian Lucaogou Formation in the Santanghu Basin, Northwest China. Journal of Petroleum Science and Engineering, 208, 109351.

    Article  Google Scholar 

  • Pan, Y. S., Huang, Z. L., Li, T. J., Xu, X. F., Chen, X., & Guo, X. B. (2021). Pore structure characteristics and evaluation of lacustrine mixed fine-grained sedimentary rocks: A case study of the Lucaogou Formation in the Malang Sag, Santanghu Basin, Western China. Journal of Petroleum Science and Engineering, 201, 108545.

    Article  Google Scholar 

  • Pang, X. Q. (2016). Genetic mechanism and prediction methodology for overstacked and continuous hydrocarbon accumulations. Science Press.

    Google Scholar 

  • Pang, X. Q., Huang, H. D., Lin, C. S., Zhu, X. M., Liao, Y., Chen, J. F., Kang, Y. S., Bai, G. P., Wu, G. D., Wu, X. S., Yu, F. S., Jiang, F. J., & Xu, J. L. (2014). Formation, distribution, exploration, and resource/reserve assessment of superimposed continuous gas field in Marsel exploration area, Kazakhstan. Acta Petrolei Sinica, 35(06), 1012–1056.

    Google Scholar 

  • Pei, S. Q., Wang, X. Z., Li, R. R., Yang, X., Long, H. Y., Hu, X., & Wang, X. X. (2021). Burial dolomitization of marginal platform bank facies and its petroleum geological implications: The genesis of Middle Permian Qixia Formation dolostones in the northwestern Sichuan Basin. Natural Gas Industry, 41(04), 22–29.

    Google Scholar 

  • Peng, R. D., Yang, Y. C., Ju, Y., Mao, L. T., & Yang, Y. M. (2011). Fractal dimension calculation of rock pore based on gray CT image. Chinese Science Bulletin, 56(26), 2256–2266.

    Google Scholar 

  • Pfeifer, P., Obert, M., & Cole, M. W. (1990). Fractal BET and FHH theories of adsorption: A comparative study. Proceedings the Royal Society of London A, 423, 169–188.

    Google Scholar 

  • Qiao, J. C., Zeng, J. H., Chen, D. X., Cai, J. C., Jiang, S., Xiao, E. Z., Zhang, Y. C., Feng, X., & Feng, S. (2022). Permeability estimation of tight sandstone from pore structure characterization. Marine and Petroleum Geology, 135, 105382.

    Article  Google Scholar 

  • Qin, M. T., Xie, S. Y., Zhang, J. B., Zhang, T. F., Carranza, E. J. M., Li, H. J., & Ma, J. Y. (2021). Petrophysical texture heterogeneity of vesicles in andesite reservoir on micro-scales. Journal of Earth Science, 32(4), 799–808.

    Article  Google Scholar 

  • Rashid, F., Hussein, D., Glover, P. W. J., Lorinczi, P., & Lawrence, J. A. (2022). Quantitative diagenesis: Methods for studying the evolution of the physical properties of tight carbonate reservoir rocks. Marine and Petroleum Geology, 139, 105603.

    Article  Google Scholar 

  • Ren, Y. G., Wang, C., Wu, H. B., Yu, J., Shao, H. M., Wan, Z. M., Wang, G. S., & Guo, H. L. (2011). Oil and gas industry standard of the People’s Republic of China: Oil and gas reservoir evaluation method (SY/T 6285-2011). Petroleum Industry Press.

    Google Scholar 

  • Sahouli, B., Blacher, S., & Brouers, F. (1996). Fractal surface analysis by using nitrogen adsorption data: The case of the capillary condensation regime. Langmuir, 12(11), 2872–2874.

    Article  Google Scholar 

  • Sakhaee-Pour, A., & Li, W. (2016). Fractal dimensions of shale. Journal of Natural Gas Science and Engineering, 30, 578–582.

    Article  Google Scholar 

  • Shao, X. H., Pang, X. Q., Li, H., & Zhang, K. (2017). Fractal analysis of pore network in tight gas sandstones using NMR method: a case study from the Ordos Basin, China. Energy and Fuels, 31(10), 10358–10368.

    Article  Google Scholar 

  • Shi, K. Y., Chen, J. Q., Pang, X. Q., Jiang, F. J., Hui, S. S., Pang, H., Ma, K. Y., & Cong, Q. (2022). Effect of wettability of shale on CO2 sequestration with enhanced gas recovery in shale reservoir: Implications from molecular dynamics simulation. Journal of Natural Gas Science and Engineering, 107, 104798.

    Article  Google Scholar 

  • Sok, R. M., Varslot, T., Ghous, A., Latham, S., & Knackstedt, M. A. (2010). Pore scale characterization of carbonates at multiple scales: Integration of micro-CT, BSEM, and FIBSEM. Petrophysics. https://doi.org/10.2451/2010PM0023

    Article  Google Scholar 

  • Sun, J., Dong, Z. Q., & Zhen, Q. (2005). Research status and development trend of dolomite genesis. Natural Gas Geoscience, 10, 25–30.

    Google Scholar 

  • Sun, M. D., Yu, B. S., Hu, Q. H., Chen, S., Xia, W., & Ye, R. C. (2016). Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: A case study from Well Yuke #1 in the Southeast of Chongqing, China. International Journal of Coal Geology, 154–155(15), 16–29.

    Article  Google Scholar 

  • Tan, Q. G., You, L. J., Kang, Y. L., & Xu, C. Y. (2021). Formation damage mechanisms in tight carbonate reservoirs: The typical illustrations in Qaidam Basin and Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 95, 104193.

    Article  Google Scholar 

  • Teegavarapu, R. S. V. (2019). Chapter 1—Methods for analysis of trends and changes in hydroclimatological time-series. In R. Teegavarapu (Ed.), Trends and changes in hydroclimatic variables (pp. 1–89). Elsevier. https://doi.org/10.1016/B978-0-12-810985-4.00001-3

    Chapter  Google Scholar 

  • Voss, R. F., Laibowitz, R. B., & Alessandrini, E. I. (1991). Fractal geometry of percolation in thin gold films. Scaling phenomena in disordered systems (p. 10.1007/978-1-4757-1402–9_23). Springer.

    Google Scholar 

  • Wang, J. L., Song, H. Q., & Wang, Y. H. (2020a). Investigation on the micro-flow mechanism of enhanced oil recovery by low-salinity water flooding in carbonate reservoir. Fuel, 266(15), 117156.

    Article  Google Scholar 

  • Wang, L., He, Y. M., Peng, X., Deng, H., Liu, Y. C., & Xu, W. (2019). Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng IV member, Gaoshiti-Moxi Area, Sichuan Basin, SW China. Marine and Petroleum Geology, 111, 44–65.

    Article  Google Scholar 

  • Wang, Y. C., Cao, J., Tao, K. Y., Li, E. T., Ma, C., & Shi, C. H. (2020b). Reevaluating the source and accumulation of tight oil in the middle Permian Lucaogou Formation of the Junggar Basin, China. Marine and Petroleum Geology, 117, 104384.

    Article  Google Scholar 

  • Wang, Z. Y., Pan, M., Shi, Y. M., Liu, L., Xiong, F., & Qin, Z. (2018). Fractal analysis of Donghetang sandstones using NMR measurements. Energy and Fuels, 32, 2973–2982.

    Article  Google Scholar 

  • Wei, D., Gao, Z. Q., Zhang, C., Fan, T. L., Karubandika, G. M., & Meng, M. M. (2019). Pore characteristics of the carbonate shoal from fractal perspective. Journal of Petroleum Science and Engineering, 174, 1249–1260.

    Article  Google Scholar 

  • Wei, W., Azmy, K., & Zhu, X. M. (2022). Impact of diagenesis on reservoir quality of the lacustrine mixed carbonate-siliciclastic-volcaniclastic rocks in China. Journal of Asian Earth Sciences, 233, 105265.

    Article  Google Scholar 

  • Westphal, H., Eberli, G. P., Smith, L. B., Grammer, G. M., & Kislak, J. (2004). Reservoir characterization of the Mississippian Madison Formation, Wind River Basin, Wyoming. AAPG Bulletin, 88(4), 405–432.

    Article  Google Scholar 

  • Xie, S. Y., Cheng, Q. M., Ling, Q. C., Li, B., Bao, Z. Y., & Fan, P. (2010). Fractal and multifractal analysis of carbonate pore-scale digital images of petroleum reservoirs. Marine and Petroleum Geology, 27(2), 476–485.

    Article  Google Scholar 

  • Xin, Y., Wang, G. W., Liu, B. C., Ai, Y., Cai, D. Y., Yang, S. W., Liu, H. K., Xie, Y. Q., & Chen, K. J. (2022). Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis. Journal of Petroleum Science and Engineering, 211, 110180.

    Article  Google Scholar 

  • Xoaoth, B. B. (1966). Coal and gas outburst. In S. Z. Song & Y. A. Wang (Eds.), Translation. Beijing: China Industry Press.

    Google Scholar 

  • Xu, G. F., Lin, C. S., & Li, Z. T. (2014a). Lithofacies paleogeography and favorable reservoir of Lower Carboniferous in southern Kazakhstan. Journal of Northeast Petroleum University, 38, 1–11.

    Google Scholar 

  • Xu, S., Gou, Q. Y., Hao, F., Zhang, B. Q., Shu, Z. G., & Zhang, Y. Y. (2020). Multiscale faults and fractures characterization and their effects on shale gas accumulation in the Jiaoshiba area, Sichuan Basin, China. Journal of Petroleum Science and Engineering, 189, 107026.

    Article  Google Scholar 

  • Xu, Z. X., Guo, S. B., Q, H., & Li, H. M. (2014b). Research on fractal characteristics of micro pore structure for shale gas. Unconventional Oil & Gas, 1(02), 20–25.

    Google Scholar 

  • Yang, C., Xiong, Y. Q., & Zhang, J. C. (2020). A comprehensive re-understanding of the OM-hosted nanopores in the marine Wufeng–Longmaxi shale formation in South China by organic petrology, gas adsorption, and X-ray diffraction studies. International Journal of Coal Geology, 218, 103362.

    Article  Google Scholar 

  • Yang, F., Ning, Z. F., & Liu, H. Q. (2014). Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 115, 378–384.

    Article  Google Scholar 

  • Zambrano, M., Tondi, E., Mancini, L., Arzilli, F., Lanzafame, G., Materazzi, M., & Torrieri, S. (2017). 3D Pore-network quantitative analysis in deformed carbonate grainstones. Marine and Petroleum Geology, 82, 251–264.

    Article  Google Scholar 

  • Zhang, J. Z., Tang, Y. J., He, D. X., Sun, P., & Zou, X. Y. (2020a). Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry. Applied Clay Science, 196, 105758.

    Article  Google Scholar 

  • Zhang, K., Pang, X. Q., Zhao, Z. F., Shao, X. H., Zhang, X., Li, W., & Wang, K. (2018). Pore structure and fractal analysis of Lower Carboniferous carbonate reservoirs in the Marsel area, Chu-Sarysu basin. Marine and Petroleum Geology, 93, 451–467.

    Article  Google Scholar 

  • Zhang, M. L., Lin, C. S., Sun, Y. D., Liu, J. Y., Li, H., Wang, Q. L., & Wang, Y. (2020b). Sequence framework, depositional evolution and controlling processes, the Early Carboniferous carbonate system, Chu-Sarysu Basin, southern Kazakhstan. Marine and Petroleum Geology, 111, 544–556.

    Article  Google Scholar 

  • Zhang, X. W., Pang, X. Q., Jin, Z. K., Hu, T., Toyin, A., & Wang, K. (2020c). Depositional model for mixed carbonate-clastic sediments in the Middle Cambrian Lower Zhangxia Formation, Xiaweidian, North China. Advances in Geo-Energy Research, 4(1), 29–42.

    Article  Google Scholar 

  • Zhang, Y. X., Yang, S. L., Zhang, Z., Li, Q., Deng, H., Chen, J. Y., Geng, W. Y., Wang, M. Y., Chen, Z. X., & Chen, H. (2022). Multiscale pore structure characterization of an ultra-deep carbonate gas reservoir. Journal of Petroleum Science and Engineering, 208, 109751.

    Article  Google Scholar 

  • Zhao, P. Q., Wang, Z. L., Sun, Z. C., Cai, J. C., & Wang, L. (2017a). Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Marine and Petroleum Geology, 86, 1067–1081.

    Article  Google Scholar 

  • Zhao, Z. F., Pang, X. Q., Li, Q. W., Hu, T., Wang, K., Li, W., Guo, K. Z., Li, J. B., & Shao, X. H. (2017b). Depositional environment and geochemical characteristics of the Lower Carboniferous source rocks in the Marsel area, Chu-Sarysu Basin, Southern Kazakhstan. Marine and Petroleum Geology, 81, 134–148.

    Article  Google Scholar 

  • Zhou, J. G., Xu, C. C., Yao, G. S., Yang, G., Zhang, J. Y., Hao, Y., Wang, F., Pan, L. G., Gu, M. F., & Li, W. Z. (2015). Genesis and evolution of Lower Cambrian Longwangmiao Formation reservoirs, Sichuan Basin, SW China. Petroleum Exploration and Development, 42(2), 158–166.

    Article  Google Scholar 

  • Zhou, X. X., Lü, X. X., Sui, F. G., Wang, X. J., & Li, Y. Z. (2021). The breakthrough pressure and sealing property of Lower Paleozoic carbonate rocks in the Gucheng area of the Tarim Basin. Journal of Petroleum Science and Engineering, 208, 109289.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the three anonymous reviewers for their valuable comments, who improved the study. This study was financially supported by the Joint Funds of National Natural Science Foundation of China (U19B6003-02), the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan (2021DJ0101), and the National Natural Science Foundation of China (42202133, 42102145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiongqi Pang or Junqing Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Pang, X., Chen, J. et al. Pore Structure Characteristics and Evaluation of Carbonate Reservoir: A Case Study of the Lower Carboniferous in the Marsel Exploration Area, Chu-Sarysu Basin. Nat Resour Res 32, 771–793 (2023). https://doi.org/10.1007/s11053-023-10166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10166-8

Keywords

Navigation