Skip to main content
Log in

Influence of Viscous and Capillary Forces on Residual Water in Anthracite Fracture Networks

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

A deeper understanding of the role of residual water and its influence on gas flow behavior in coal seams is a key factor to achieve enhanced coalbed methane (CBM) production. In this study, numerical simulations were performed to study the gas–water drainage displacement in different coal lithotypes (bright coal, semi-bright coal, and semi-dull coal) at various viscosity ratios (M) and capillary numbers (Ca). The results indicate that capillary and viscous forces influence the displacement stability as well as the residual water saturation. The residual water saturation remains higher in unstable displacement vs. stable displacement conditions. The residual water saturation in bright coal, semi-bright coal, and semi-dull coal ranged at 21.5–36.4%, 29.9–36.8%, and 46.4–49.6%, respectively. The performed numerical simulations showed four residual water formation mechanisms in the modeled coal fracture networks, including nonsimultaneous displacement, deflection flowrate, dead-end fractures, and by-passing. From unstable displacement to stable displacement, nonsimultaneous displacement, deflection flowrate, dead-end fracture, and by-passing accounted for 3.0%, 2.1%, 13.1%, and 20.3% of the reduction of residual water saturation, respectively. The residual water in the by-passing mechanism is easily remobilized in coal. Our study suggests that the daily gas and water production should be controlled to reach stable displacement, which is beneficial to CBM production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Alajmi, A. F., & Grader, A. S. (2000). Analysis of fracture-matrix fluid flow interactions using X-ray CT. SPE Eastern Regional Meeting. https://doi.org/10.2118/65628-MS

    Article  Google Scholar 

  • Akhlaghi Amiri, H. A., & Hamouda, A. A. (2014). Pore-scale modeling of non-isothermal two phase flow in 2D porous media: Influences of viscosity, capillarity, wettability and heterogeneity. International Journal of Multiphase Flow, 61, 14–27.

    Article  Google Scholar 

  • Alpak, F. O., Zacharoudiou, I., Berg, S., Dietderich, J., & Saxena, N. (2019). Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units. Computational geosciences, 23(5), 849–880.

    Article  Google Scholar 

  • Ameli, F., Moghbeli, M. R., & Alashkar, A. (2019). On the effect of salinity and nano-particles on polymer flooding in a heterogeneous porous media: Experimental and modeling approaches. Journal of Petroleum Science and Engineering, 174, 1152–1168.

    Article  Google Scholar 

  • Brien, A. O., Afkhami, S., & Bussmann, M. (2020). Pore-scale direct numerical simulation of Haines jumps in a porous media model. The European Physical Journal Special Topics, 229, 1785–1798.

    Article  Google Scholar 

  • Cai, L., Ding, D., Wang, C., & Wu, Y. (2015). Accurate and efficient simulation of fracture-matrix interaction in shale gas reservoirs. Transport in Porous Media, 107(2), 305–320.

    Article  Google Scholar 

  • Chen, C., & Horne, R. N. (2006). Two-phase flow in rough-walled fractures: Experiments and a flow structure model. Water Resources Research. https://doi.org/10.1029/2004WR003837

    Article  Google Scholar 

  • Chen, Y., Fang, S., Wu, D., & Hu, R. (2017). Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture. Water Resources Research, 53(9), 7756–7772.

    Article  Google Scholar 

  • Clarkson, C. R., Rahmanian, M., Kantzas, A., & Morad, K. (2011). Relative permeability of CBM reservoirs: Controls on curve shape. International Journal of Coal Geology, 88(4), 204–217.

    Article  Google Scholar 

  • Dehghan, A. A., Ghorbanizadeh, S., & Ayatollahi, S. (2012). Investigating the fracture network effects on sweep efficiency during WAG injection process. Transport in Porous Media, 93(3), 577–595.

    Article  Google Scholar 

  • Gerami, A., Armstrong, R. T., Jing, Y., Wahid, F. A., Arandiyan, H., & Mostaghimi, P. (2019). Microscale insights into gas recovery from bright and dull bands in coal. Journal of Petroleum Science and Engineering, 172, 373–382.

    Article  Google Scholar 

  • Gong, J., & Rossen, W. R. (2017). Modeling flow in naturally fractured reservoirs: Effect of fracture aperture distribution on dominant sub-network for flow. Petroleum Science, 14(1), 138–154.

    Article  Google Scholar 

  • Han, L., Shen, J., Qu, J., & Ji, C. (2021). Characteristics of a multi-scale fracture network and its contributions to flow properties in anthracite. Energy & Fuels, 35(14), 11319–11332.

    Article  Google Scholar 

  • Han, L., Shen, J., Qu, J., Ji, C., & Cheng, H. (2022). The analysis of micro-occurrence state of irreducible water in anthracite fracture network based on digital core (own unpublished data).

  • Jia, W., Yang, Q., Lan, Y., & Zhang, H. (2002). Experimental study on the process of water-oil displacement with the micro-model. Petroleum Geology & Oilfield Development in Daqing, 21(1), 46–49.

    Google Scholar 

  • Jing, Y., Rabbani, A., Armstrong, R. T., Wang, J., & Mostaghimi, P. (2020). A hybrid fracture-micropore network model for multiphysics gas flow in coal. Fuel (Guildford), 281, 118687.

    Article  Google Scholar 

  • Lai, F. P., Li, Z. P., Dong, H. K., Jiang, Z. Y., & Mao, G. T. (2019). Micropore structure characteristics and water distribution in a coalbed methane reservoir. Australian Journal of Earth Sciences, 66(5), 741–750.

    Article  Google Scholar 

  • Lee, J., Kang, J. M., & Choe, J. (2003). Experimental analysis on the effects of variable apertures on tracer transport. Water Resources Research. https://doi.org/10.1029/2001WR001246

    Article  Google Scholar 

  • Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of fluid mechanics, 189, 165–187.

    Article  Google Scholar 

  • Li, B., Liu, R., & Jiang, Y. (2016). Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. Journal of Hydrology, 538, 440–453.

    Article  Google Scholar 

  • Li, G., Wu, X., Liu, Y., & Yang, J. (2020). The full life-circle production and effect evaluation of Panzhuang coalbed methane wells in Qinshui Basin. Journal of China Coal Society, S02(46), 10. https://doi.org/10.13225/j.cnki.jccs.2020.0625

    Article  Google Scholar 

  • Liu, R., Jiang, Y., & Li, B. (2016a). Effects of intersection and dead-end of fractures on nonlinear flow and particle transport in rock fracture networks. Geosciences Journal, 20(3), 415–426.

    Article  Google Scholar 

  • Liu, R., Li, B., & Jiang, Y. (2016b). Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Advances in Water Resources, 88, 53–65.

    Article  Google Scholar 

  • Liu, Z., & Wu, H. (2016a). Pore-scale modeling of immiscible two-phase flow in complex porous media. Applied Thermal Engineering, 93, 1394–1402.

    Article  Google Scholar 

  • Liu, Z., & Wu, H. (2016b). Pore-scale study on flow and heat transfer in 3D reconstructed porous media using micro-tomography images. Applied Thermal Engineering, 100, 602–610.

    Article  Google Scholar 

  • Løvoll, G., Méheust, Y., Måløy, K. J., Aker, E., & Schmittbuhl, J. (2005). Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study. Energy (Oxford), 30(6), 861–872.

    Article  Google Scholar 

  • Lu, Y., Liu, D., Cai, Y., Gao, C., Jia, Q., & Zhou, Y. (2022). AFM measurement of roughness, adhesive force and wettability in various rank coal samples from Qinshui and Junggar Basin, China. Fuel, 317, 123556.

    Article  Google Scholar 

  • Maaref, S., Rokhforouz, M. R., & Ayatollahi, S. (2017). Numerical investigation of two phase flow in micromodel porous media: Effects of wettability, heterogeneity, and viscosity. Canadian Journal of Chemical Engineering, 95(6), 1213–1223.

    Article  Google Scholar 

  • Mahoney, S. A., Rufford, T. E., Dmyterko, A. S., Rudolph, V., & Steel, K. M. (2015). The effect of rank and lithotype on coal wettability and its application to coal relative permeability models. In Proceedings SPE Asia Pacific unconventional resources conference and exhibition. https://doi.org/10.2118/176870-MS

  • Mahoney, S. A., Rufford, T. E., Johnson, D., Dmyterko, A. S. K., Rodrigues, S., Esterle, J., & Steel, K. M. (2017a). The effect of rank, lithotype and roughness on contact angle measurements in coal cleats. International Journal of Coal Geology, 179, 302–315.

    Article  Google Scholar 

  • Méheust, Y., Løvoll, G., Måløy, K. J., & Schmittbuhl, J. (2002). Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 66(5 Pt 1), 51603.

    Article  Google Scholar 

  • Mo, S. Y., He, S. L., Lei, G., Gai, S. H., & Liu, Z. K. (2015). Effect of the drawdown pressure on the relative permeability in tight gas: A theoretical and experimental study. Journal of Natural Gas Science and Engineering, 24, 264–271.

    Article  Google Scholar 

  • Moebius, F., & Or, D. (2012). Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. Journal of Colloid and Interface Science, 377(1), 406–415.

    Article  Google Scholar 

  • Newgord, C., Tandon, S., Rostami, A., & Heidari, Z. (2018). Wettability quantification in mixed-wet rocks using a new NMR-based method. SPE Annual Technical Conference and Exhibition, 23(03), 0896–0916.

    Google Scholar 

  • Qin, Y., Moore, T. A., Shen, J., Yang, Z., Shen, Y., & Wang, G. (2017). Resources and geology of coalbed methane in China: A review. International Geology Review, 60(5–6), 777–812.

    Google Scholar 

  • Qin, Y., Shen, J., & Shi, R. (2021). Strategic value and choice on construction of large CMG industry in China. Journal of China Coal Society, 1, 371–387.

    Google Scholar 

  • Raeini, A. Q., Blunt, M. J., & Bijeljic, B. (2012). Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, 231(17), 5653–5668.

    Article  Google Scholar 

  • Rangel-German, E. R., & Kovscek, A. R. (2006). A micromodel investigation of two-phase matrix-fracture transfer mechanisms. Water Resources Research. https://doi.org/10.1029/2004WR003918

    Article  Google Scholar 

  • Saidian, M., Masihi, M., Ghazanfari, M. H., Kharrat, R., & Mohammadi, S. (2014). An experimental study of the matrix-fracture interaction during miscible displacement in fractured porous media: A micromodel study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(3), 259–266.

    Article  Google Scholar 

  • Shen, J., Qin, Y., Li, Y., & Wang, G. (2019). Experimental investigation into the relative permeability of gas and water in low-rank coal. Journal of Petroleum Science and Engineering, 175, 303–316.

    Article  Google Scholar 

  • Shen, J., Qin, Y., Wang, G. X., Fu, X., Wei, C., & Lei, B. (2011). Relative permeabilities of gas and water for different rank coals. International Journal of Coal Geology, 86(2–3), 266–275.

    Article  Google Scholar 

  • Shen, J., Zhao, J., Qin, Y., Shen, Y., & Wang, G. (2018). Water imbibition and drainage of high rank coals in Qinshui Basin, China. Fuel, 211, 48–59.

    Article  Google Scholar 

  • Shi, Q., Cui, S., Wang, S., Mi, Y., Sun, Q., Wang, S., & Yu, J. (2022). Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment. Energy, 254, 124392.

    Article  Google Scholar 

  • Si, L., Xi, Y., Wei, J., Wang, H., Zhang, H., Xu, G., & Liu, Y. (2022). The influence of inorganic salt on coal-water wetting angle and its mechanism on eliminating water blocking effect. Journal of Natural Gas Science and Engineering, 103, 104618.

    Article  Google Scholar 

  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure And Applied Chemistry, 57(4), 603–619.

    Article  Google Scholar 

  • Siripaiboon, C., Sarabhorn, P., & Areeprasert, C. (2020). Two-dimensional CFD simulation and pilot-scale experimental verification of a downdraft gasifier: Effect of reactor aspect ratios on temperature and syngas composition during gasification. International Journal of Coal Science & Technology, 7(3), 536–550.

    Article  Google Scholar 

  • Su, X., Wang, Q., Song, J., Chen, P., Yao, S., Hong, J., & Zhou, F. (2017). Experimental study of water blocking damage on coal. Journal of Petroleum Science and Engineering, 156, 654–661.

    Article  Google Scholar 

  • Sun, H., Zhao, Y., & Yao, J. (2017). Micro-distribution and mechanical characteristics analysis of remaining oil. Petroleum, 3(4), 483–488.

    Article  Google Scholar 

  • Sun, Z., & Santamarina, J. C. (2019). Haines jumps: Pore scale mechanisms. Physical Review E, 100(2–1), 23115.

    Article  Google Scholar 

  • Tao, L., Guo, J., Halifu, M., Zeng, J., & Zhao, Y. (2020). A new mixed wettability evaluation method for organic-rich shales. In: Proceedings SPE Asia Pacific oil & gas conference and exhibition. https://doi.org/10.2118/202466-MS

  • Tian, K. (1986). The hydraulic properties of crossing-flow in an intersected fracture. Acta Geologica Sinica, 02, 202–214.

    Google Scholar 

  • Vranjes-Wessely, S., Misch, D., Issa, I., Kiener, D., Fink, R., Seemann, T., Liu, B., Rantitsch, G., & Sachsenhofer, R. F. (2020). Nanoscale pore structure of Carboniferous coals from the Ukrainian Donets Basin: A combined HRTEM and gas sorption study. International Journal of Coal Geology, 224, 103484.

    Article  Google Scholar 

  • Vranjes-Wessely, S., Misch, D., Schöberl, T., Kiener, D., Gross, D., & Sachsenhofer, R. F. (2018). Nanoindentation study of macerals in coals from the Ukrainian Donets Basin. Advances in Geosciences, 45, 73–83.

    Article  Google Scholar 

  • Wang, G., Han, D., Jiang, C., & Zhang, Z. (2020). Seepage characteristics of fracture and dead-end pore structure in coal at micro- and meso-scales. Fuel, 266, 117058.

    Article  Google Scholar 

  • Wang, Y., Zhang, C., Wei, N., Oostrom, M., Wietsma, T. W., Li, X., & Bonneville, A. (2013). Experimental study of crossover from capillary to viscous fingering for supercritical CO2–water displacement in a homogeneous pore network. Environmental Science & Technology, 47(1), 212–218.

    Article  Google Scholar 

  • Wang, Z., Liu, S., & Qin, Y. (2021). Coal wettability in coalbed methane production: A critical review. Fuel, 303, 121277.

    Article  Google Scholar 

  • Wilson, C. R., & Witherspoon, P. A. (1976). Flow interference effects at fracture intersections. Water Resources Research, 12(1), 102–104.

    Article  Google Scholar 

  • Xia, H., Wang, L., Han, P., Cao, R., Liu, L., & Zhang, S. (2021). Research on production conditions of film remaining oil. Special Oil & Gas Reservoirs, 28(03), 106–111.

    Google Scholar 

  • Yamabe, H., Tsuji, T., Liang, Y., & Matsuoka, T. (2015a). Lattice Boltzmann simulations of supercritical CO2–water drainage displacement in porous media: CO2 saturation and displacement mechanism. Environmental Science & Technology, 49(1), 537–543.

    Article  Google Scholar 

  • Zacharoudiou, I., Boek, E. S., & Crawshaw, J. (2018). The impact of drainage displacement patterns and Haines jumps on CO2 storage efficiency. Scientific Reports, 8(1), 15561. https://doi.org/10.1038/s41598-018-33502-y

    Article  Google Scholar 

  • Zhang, C., Oostrom, M., Grate, J. W., Wietsma, T. W., & Warner, M. G. (2011a). Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environmental Science & Technology, 45(17), 7581–7588.

    Article  Google Scholar 

  • Zhang, C., Oostrom, M., Wietsma, T. W., Grate, J. W., & Warner, M. G. (2011b). Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy & Fuels, 25(8), 3493–3505.

    Article  Google Scholar 

  • Zhang, J., Zhang, J., Feng, Q., Feng, Q., Zhang, X., Zhang, X., & Zhai, Y. (2015). Relative permeability of coal: A review. Transport in Porous Media, 106(3), 563–594.

    Article  Google Scholar 

  • Zhang, Z., Yan, D., Yang, S., Zhuang, X., Li, G., Wang, G., & Wang, X. (2020). Experimental studies on the movable-water saturations of different-scale pores and relative permeability of low-medium rank coals from the Southern Junggar Basin. Journal of Natural Gas Science and Engineering, 83, 103585.

    Article  Google Scholar 

  • Zhu, Q., Lu, X., Yang, Y., Zhang, Q., & Lu, X. (2019). Coupled activation technology for low-efficiency productivity zones of high-rank coalbed methane in Zhengzhuang block, Shanxi, China. Journal of China Coal Society, 44(08), 2547–2555.

    Google Scholar 

  • Zhu, Q., Yang, Y., Wang, Y., & Shao, G. (2017). Optimal geological–engineering models for highly efficient CBM gas development and their application. Natural Gas Industry, 37(10), 27–34.

    Google Scholar 

  • Zhu, Q., Yang, Y., Zuo, Y., Song, Y., Guo, W., & Wang, G. (2020). On the scientific exploitation of high-rank CBM resource. Natural Gas Industry, 40(1), 55–60.

    Google Scholar 

  • Zou, G., Zhang, Q., Peng, S., She, J., Teng, D., Jin, C., & Che, Y. (2022). Influence of geological factors on coal permeability in the Sihe coal mine. International Journal of Coal Science & Technology, 9(1), 1–13.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (41872171), Jie Bang Zhao Biao Project of Shanxi Province (20201101002), Natural Science Foundation of Hebei Province (E2020209074), the Qing Lan Project of Jiangsu Province and Provincial advantage discipline III-Geological resources and Engineering (140119002). Work of David Misch was supported by the Austrian Science Fund (FWF) Grant No. P-33883. The authors would like to thank Dr. Khadija Shabbiri for providing great help on English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Shen.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Misch, D., Shen, J. et al. Influence of Viscous and Capillary Forces on Residual Water in Anthracite Fracture Networks. Nat Resour Res 32, 603–617 (2023). https://doi.org/10.1007/s11053-022-10154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10154-4

Keywords

Navigation