Skip to main content

Advertisement

Log in

Nanopore Structure Evolution of Lower Cambrian Shale in the Western Hubei Area, Southern China, and its Geological Implications based on Thermal Simulation Experimental Results

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The nanopore structure and evolution of shale reservoirs have been a research hotspot because they have important impacts on the storage of shale gas. In this paper, thermal simulation experiments were carried out on a Lower Cambrian shale with high maturity taken from the western Hubei area, southern China, to obtain a suite of sub-samples with different maturities. The results show that within the EqRo (equivalent vitrinite reflectance) range of 2.96–4.36%, the specific surface areas of OM (organic matter) and IM (inorganic matter) nanopores in the shale increased at first and then decreased, reaching maximum at 3.64% EqRo. As EqRo > 3.64%, the pore volume of OM decreased significantly, while the pore volume of IM showed an increase. The specific surface area and volume of OM pore increased first and then decreased with increase in CH4 yield, indicating that the thermal evolution and methanogenesis of OM were not always conducive to the development of pore structure, and the late graphitization (EqRo > 3.64%) may be the main mechanism for the destruction of the OM pore structure. The continuous increase of IM pore volume was attributed mainly to the decomposition of minerals such as illite and calcite, which formed pore spaces. The effective maturity range of the Lower Cambrian shale gas in the western Hubei area can reach to EqRo of 3.64%, which is an important guide to the exploration and development of shale gas in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. (2010). New pore-scale considerations for shale gas in place calculations. In Proceedings of the North American unconventional gas conference and exhibition (Society of Petroleum Engineers).

  • Borjigin, T., Lu, L. F., Yu, L. J., Zhang, W. T., Pan, A. Y., Shen, B. J., Wang, Y., Yang, Y. F., & Gao, Z. W. (2021). Formation, preservation and connectivity control of organic pores in shale. Petroleum Exploration and Development, 48(04), 798–812.

    Article  Google Scholar 

  • Chalmers, G. R. L., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(06), 1099–1119.

    Article  Google Scholar 

  • Clarkson, C. R., Solano, N., Bustin, R. M., Bustin, A. M. M., Chalmers, G. R. L., He, L., Melnichenko, Y. B., Radliński, A. P., & Blach, T. P. (2013). Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103, 606–616.

    Article  Google Scholar 

  • Chen, L., Jiang, Z. X., Liu, K. Y., Tan, J. Q., Gao, F. L., & Wang, P. F. (2017). Pore structure characterization for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: a possible mechanism for pore development. Journal of Natural Gas Science and Engineering, 46, 1–15.

    Article  Google Scholar 

  • Chen, L., Jiang, Z. X., Liu, Q. X., Jiang, S., Liu, K. Y., Tan, J. Q., & Gao, F. L. (2019). Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Marine and Petroleum Geology, 104, 200–216.

    Article  Google Scholar 

  • Cao, T. T., Deng, M., Cao, Q. G., Huang, Y. R., Yu, Y., & Cao, X. X. (2021). Pore formation and evolution of organic-rich shale during the entire hydrocarbon generation process: Examination of artificially and naturally matured samples. Journal of Natural Gas Science and Engineering, 93, 104020.

    Article  Google Scholar 

  • Chen, X. H., Wei, K., Zhang, B. M., Li, P. J., Li, H., Liu, A., & Luo, S. Y. (2018). Main geological factors controlling shale gas reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as well as its and enrichment patterns. Geology in China, 45(2), 207–226. in Chinese with English abstract.

    Google Scholar 

  • Cheng, M., Li, C., Zhou, L., Algeo, T. J., Zhang, F. F, Romaniello, S., Jin, C. S., Lei, L. D., Feng, L. J., & Jiang, S. Y. (2016). Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: a case study of the lower Cambrian niutitang shales, South China. Geochimica et Cosmochimica Acta, 183, 79–93.

    Article  Google Scholar 

  • Chalmers, G. R. L., & Bustin, R. M. (2008). Lower Cretaceous gas shales in Northeastern British Columbia, Part I: Geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(1), 1–21.

    Article  Google Scholar 

  • Chen, J., & Xiao, X. M. (2014). Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel, 129(4), 173–181.

    Article  Google Scholar 

  • Cao, T. T., Song, Z. G., Wei, S. B., & Xia, J. (2015). A comparative study of the specific surface area and pore structure of different shales and their kerogens. Science China Earth Sciences, 58(004), 510–522. in Chinese and English abstract.

    Article  Google Scholar 

  • Chalmers, G. R. L., & Bustin, R. M. (2012). Geological evaluation of Halfway–Doig–Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia. Marine and Petroleum Geology, 38(1), 53–72.

    Article  Google Scholar 

  • Cheng, P., Xiao, X. M., Tian, H., & Wang, X. (2018). Water Content and equilibrium saturation and their influencing factors of the lower paleozoic overmature organic-rich shales in the upper Yangtze Region of Southern China. Energy & Fuels, 32, 11452–11466.

    Article  Google Scholar 

  • Chong, L., & Myshakin, E. M. (2020). The effect of residual water content on preferential adsorption in carbon dioxide-methane-illite clay minerals: A molecular simulation study. Fluid Phase Equilibria, 504, 112333.

    Article  Google Scholar 

  • Fishman, N. S., Hackley, P. C., Lowers, H. A., Hill, R. J., Egenhoff, S. O., Eberl, D. D., & Blum, A. E. (2012). The nature of porosity in organic-rich mudstones of the upper jurassic kimmeridge clay formation, North Sea, offshore United Kingdom. International Journal of Coal Geology, 103, 32–50.

    Article  Google Scholar 

  • Franco, N., Kalkreuth, W., & Peralba, M. D. R. (2010). Geochemical characterization of solid residues, bitumen and expelled oil based on steam pyrolysis experiments from Irati oil shale, Brazil: A preliminary study. Fuel, 89, 1863–1871.

    Article  Google Scholar 

  • Gou, Q. Y., Xu, S., Hao, F., Yang, F., Zhang, B. Q., Shu, Z. G., Zhang, A. H., Wang, Y. X., Lu, Y. B., Cheng, X., Qing, J. W. & Gao, M. T. (2019). Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, Nano-CT and Micro-CT: A case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China. Fuel, 253, 167–179.

    Article  Google Scholar 

  • Guo, S. B., & Mao, W. J. (2019). Division of diagenesis and pore evolution of a Permian Shanxi shale in the Ordos Basin, China. Journal of Petroleum Science and Engineering, 182, 106351.

    Article  Google Scholar 

  • Guo, X. L., Xiong, M., Zhou, Q., Tian, H., & Xiao, X. M. (2009). Petroleum generation and expulsion kinetics: A case study of the Sahejie formation Source Rocks from Linnan Sag of Huimin depression. Acta Sedimentologica Sinica, 27(4), 723–731. in Chinese with English abstract.

    Google Scholar 

  • Gai, H. F, Tian, H., Cheng, P., He, C. M., Wu, Z. J., Ji, S., & Xiao, X. M. (2020). Characteristics of molecular nitrogen generation from overmature black shales in South China: Preliminary implications from pyrolysis experiments. Marine and Petroleum Geology, 120, 104527.

    Article  Google Scholar 

  • Groen, J. C., Peffer, L. A. A., & Pérez-Ramirez, J. (2003). Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas desorption data analysis. Microporous and Mesoporous Materials, 60(1/3), 1–17.

    Article  Google Scholar 

  • Hao, F., Zou, H. Y., & Lu, Y. C. (2013). Mechanisms of shale gas storage: Implications for shale gas exploration in China. Aapg Bulletin, 97(8), 1325–1346.

    Article  Google Scholar 

  • He, J., He, S., Liu, Z. X., Zhai, G. Y., Wang, Y., Han, Y. J., Wan, K., & Wei, S. L. (2020). Pore structure and adsorption capacity of shale in the Lower Cambrian Shuijingtuo Formation in the southern flank of Huangling anticline, western Hubei. Acta Petrolei Sinica, 41(1), 27–42. in Chinese and English abstract.

    Google Scholar 

  • Han, S. B., Tang, Z. Y., Yang, C. L., Xie, L. F., Xiang, Z. H., Horsfield, B., & Wang, C. S. (2021). Genesis and energy significance of hydrogen in natural gas. Natural Gas Geoscience, 32(9), 1270–1284. in Chinese and English abstract.

    Google Scholar 

  • Hu, D. G., Wan, Y. Q., Fang, D. L., Ye, X., Xu, X., Xing, L., Cui, Z. H., & Zhang, Z. H. (2021). Pore characteristics and evolution model of shale in Wufeng-Longmaxi formation in Sichuan Basin. Periodical of Ocean University of China, 51(10), 80–88. in Chinese with English abstract.

    Google Scholar 

  • Jiang, S. L., Mao, M., Hong, K. Y., Hu, X. L., Zhu, L. L., Wang, S. S., & Wang, Q. (2018). Conditions of shale gas accumulation and gas-bearing factors of lower Cambrian Niutitang formation in Western Hu’nan and Hubei. Marine Origin Petroleum Geology, 23(01), 75–82. in Chinese with English abstract.

    Google Scholar 

  • Jiang, G., Shi, X., Zhang, S., Wang, Y., & Xiao, S. (2011). Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4), 831–849.

    Article  Google Scholar 

  • Jiang, G. Q., Wang, X. Q., Shi, X. Y., Xiao, S., Zhang, S., & Dong, J. (2012). The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520Ma) Yangtze platform. Earth and Planetary Science Letters, 317–318(2), 96–110.

    Article  Google Scholar 

  • Jin, C. S., Li, C., Algeo, T. J., Planavsky, N. J., Cui, H., Yang, X. L., Zhao, Y. L., Zhang, X. L., & Xie, S. C. (2016). A highly redox-heterogeneous ocean in South China during the early Cambrian (~529-514 Ma): implications for biota-environment co-evolution. Earth and Planetary Science Letters, 441, 38–51.

    Article  Google Scholar 

  • Kuila, U., Prasad, M., Derkowski, A., & McCarty, D. K. (2012). Compositional controls on mudrock pore-size distribution: an example from Niobrara Formation. In SPE paper 160141 presented at annual technical conference in San Antonio, Texas (pp. 8–10).

  • Ko, L. T., Loucks, R. G., Ruppel, S. C., Zhang, T. W., & Peng, S. (2017). Origin and characterization of Eagle Ford pore networks in the south Texas upper Cretaceous shelf. AAPG Bulletin, 101(3), 387–418.

    Article  Google Scholar 

  • Liu, K. Q., Ostadhassan, M., Zhou, J., Gentzis, T., & Rezaee, R. (2017). Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel, 209, 567–578.

    Article  Google Scholar 

  • Lin, T., Zhang, J. C., Li, B., Yang, S. Y., He, W., Tang, X., Ma, L. R., & Pei, S. W. (2014). Shale gas accumulation conditions and gas-bearing properties of the Lower Cambrian Niutitang Formation in Well Changye 1, northwestern Hunan. Acta Petrolei Sinica, 35(5), 839–846. in Chinese with English abstract.

    Google Scholar 

  • Luo, S. Y., Chen, X. H., Li, P. J., & Tang, X. H. (2020a). Characteristics of conventional and unconventional shale gas displays of the Cambrian strata in Yichang area West Hubei and their exploration significance. Geological Bulletin of China, 39(4), 538–551. in Chinese with English abstract.

    Google Scholar 

  • Luo, S. Y., Chen, X. H., Li, H., Liu, A., & Wang, C. S. (2019a). Shale gas accumulation conditions and target optimization of lower Cambrian Shuijingtuo formation in Yichang Area, West Hubei. Earth Science, 44(11), 3598–3615. in Chinese with English abstract.

    Google Scholar 

  • Luo, S. Y., Chen, X. H., Yue, Y. Li, P. J., Cai, Q. S., & Yang, R. Z. (2020b). Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze. Natural Gas Geoscience, 31(8), 1052–1068. in Chinese with English abstract.

    Google Scholar 

  • Luo, S. Y., Liu, A., Li, H., Chen, X. H., & Zhang, M. (2019b). Gas-bearing characteristics and controls of the Cambrian Shuijingtuo Formation in Yichang area, Middle Yangtze region. Petroleum Geology and Experiment, 41(01), 56–67. in Chinese with English abstract.

    Google Scholar 

  • Li, G., Gao, P., Xiao, X. M., Lu, C. G., & Feng, Y. (2022). Lower Cambrian organic-rich shales in Southern China: A review of gas-bearing property, pore structure, and their controlling factors. Geofluids, 2022, 9745313.

    Google Scholar 

  • Liu, Z. H., Zhuang, X. G., Teng, G. E., Xie, X. M., Yin, L. M., Bian, L. Z., Feng, Q. L., & Algeo, T. J. (2015). The lower Cambrian Niutitang formation at Yangtiao (Guizhou, SW China): organic matter enrichment, source rock potential, and hydrothermal influences. Journal of Petroleum Geology, 38, 411–432.

    Article  Google Scholar 

  • Li, J., Tang, S. H., Zhang, S. H., Xi, Z. D., Yang, N., Yang, G. Q., Li, L., & Li, Y. P. (2018a). Paleo-environmental conditions of the Early Cambrian Niutitang Formation in the Fenggang area, the southwestern margin of the Yangtze platform, southern China: Evidence from major elements, trace elements and other proxies. Journal of Asian Earth Sciences, 159, 81–97.

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.

    Article  Google Scholar 

  • Li, M., Chen, J. F., Wang, T. G., Zhong, N. N., & Shi, S. B. (2018b). Nitrogen isotope and trace element composition characteristics of the lower Cambrian Niutitang formation shale in the upper-middle Yangtze region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 501, 1–12.

    Article  Google Scholar 

  • Liu, Z. X., Yan, D. T., Yuan, D. E., Niu, X., & Fu, H. J. (2022a). Multiple controls on the organic matter accumulation in early Cambrian marine black shales, middle Yangtze Block, South China. Marine and Petroleum Geology, 100, 104454.

    Google Scholar 

  • Li, Z., Zhao, Z., Wang, Q., & Wang, G. C. (2018c). Transition mechanism of the reaction interface of the thermal decomposition of calcite. Journal of Crystal Growth, 492, 13–17.

    Article  Google Scholar 

  • Lee, S. Y., Ryu, B. H., Han, G. Y., Lee, T. J., & Yoon, K. J. (2008). Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production. Carbon, 46(14), 1978–1986.

    Article  Google Scholar 

  • Li, X. Q., Li, Y. Y., Li, J. H., Zou, X. Y., Guo, M., Wang, Z., Zhang, X. Q., & Wang, F. Y. (2020a). Characteristics of pore structures from the Lower Paleozoic shale gas reservoirs in northern Guizhou, South China. Journal of Natural Gas Geoscience, 07, 003.

    Google Scholar 

  • Li, C. X., Shen, B. J., Pan, A. Y., Zhang, W. T., Li, A., & Ding, J. H. (2020b). Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin. Petroleum Geology and Experiment, 42(03), 434–442. in Chinese with English abstract.

    Google Scholar 

  • Luo, S. Y., Chen, X. H., Liu, A., Li, H., & Sun, C. (2019c). Characteristics and geological significance of canister desorption gas from the Lower Cambrian Shuijingtuo Formation shale in Yichang area. Middle Yangtze region. Acta Petrolei Sinica, 40(08), 941–955.

    Google Scholar 

  • Liu, Z. X., Xu, L. L., Wen, Y. R., Zhang, Y. L., Luo, F., Duan, K., Chen, W., Zhou, X. H., & Wen, J. H. (2022b). Accumulation characteristics and comprehensive evaluation of shale gas in Cambrian Niutitang Formation. Hubei. Earth Science, 47(5), 1586–1603. in Chinese with English abstract.

    Google Scholar 

  • Milliken, K. L., Esch, W. L., Reed, R. M., & Zhang, T. W. (2012). Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. Aapg Bulletin, 96(8), 1553–1578.

    Article  Google Scholar 

  • Mastalerz, M., Schimmelmann, A., Drobniak, A., & Chen, Y. Y. (2013). Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 97(10), 1621–1643.

    Article  Google Scholar 

  • Ma, Y. Q., Lu, Y. C., Lu, X. F., Zhai, G. Y., Wang, Y. F, & Zhang, C. (2019). Depositional environment and organic matter enrichment of the lower Cambrian Niutitang shale in western Hubei Province, South China-ScienceDirect. Marine and Petroleum Geology, 109, 381–393.

    Article  Google Scholar 

  • Mou, S. B., & Sun, Z. Y. (2002). Hydration activity of burnt shale and its application mechanism in cement admixture. Non-Metallic Mines, 25(01), 29–30. in Chinese with English abstract.

    Google Scholar 

  • Matea, B., Thomas, L., Johannes, L., Viani, A., Bianchi, S., Hradil, K., Rohatsch, A., & Castelvetro, V. (2021). Evolution of calcite surfaces upon thermal decomposition, characterized by electrokinetics, in-situ XRD, and SEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126761.

    Article  Google Scholar 

  • Muradov, N. Z., & Veziroglu, T. N. (2005). From hydrocarbon to hydrogen-carbon to hydrogen economy. International Journal of Hydrogen Energy, 30(3), 225–237.

    Article  Google Scholar 

  • Meng, F. Y., Chen, K., Bao, S. J., Li, H. H., Zhang, C., & Wang, J. Z. (2018). Gas-bearing property and main controlling factors of Lower Cambrian shale in complex tectonic area of northwestern Hunan province: a case of well Ciye 1. Lithologic Reservoirs, 30(5), 29–39. in Chinese with English abstract.

    Google Scholar 

  • Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., & Jiang, S. Y. (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang formation in Guizhou province, South China: constraints for redox environments and origin of metal enrichments. Precambrian Research, 225, 218–229.

    Article  Google Scholar 

  • Ptáček, P., Šoukal, F., & Opravil, T. (2021). Thermal decomposition of ferroan dolomite: A comparative study in nitrogen, carbon dioxide, air and oxygen. Solid State Sciences, 122, 106778.

    Article  Google Scholar 

  • Ross, D. J. K., & Bustin, R. M. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.

    Article  Google Scholar 

  • Rodriguez-Navarro, C., Kudlacz, K., & Ruiz-Agudo, E. (2012). The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses. American Mineralogist, 97(1), 38–51.

    Article  Google Scholar 

  • Rodrı′guez-Reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159–175.

    Article  Google Scholar 

  • Stainforth, J. G. (2009). Practical kinetic modelling of petroleum generation and expulsion. Marine and Petroleum Geology, 26, 552–572.

    Article  Google Scholar 

  • Spigolon, A. L. D., Lewan, M. D., de Barros Penteado, H. L., Coutinho, L. F. C., & Mendonça Filho, J. G. (2015). Evaluation of the petroleum composition and quality with increasing thermal maturity as simulated by hydrous pyrolysis: A case study using a Brazilian source rock with Type I kerogen. Organic Geochemistry, 83–84, 27–53.

    Article  Google Scholar 

  • Schoenherr, J., Littke, R., Urai, J. L., Kukla, P. A., & Rawahi, Z. (2007). Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen. Organic Geochemistry, 38, 1293–1318.

    Article  Google Scholar 

  • Sanei, H., Haeri-Ardakani, O., Wood, J. M., & Curtis, M. E. (2015). Effects of nanoporosity and surface imperfections on solid bitumen reflectance (BRo) measurements in unconventional reservoirs. International Journal of Coal Geology, 138, 95–102.

    Article  Google Scholar 

  • Schmidt, J. S., Menezes, T. R., Souza, I., Spigolon, A. L. D., Pestilho, A. L. S., & Coutinho, L. F. C. (2019). Comments on empirical conversion of solid bitumen reflectance for thermal maturity evaluation. International Journal of Coal Geology, 201, 44–50.

    Article  Google Scholar 

  • Suzuki, N., Saito, H., & Hoshino, T. (2017). Hydrogen gas of organic origin in shales and metapelites. International Journal of Coal Geology, 173, 227–236.

    Article  Google Scholar 

  • Sing, K. S. W., Everett, D. H., & Haul, R. A. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.

    Article  Google Scholar 

  • Su, Y., Wang, W. M., Li, J. J., Gong, D. J., & Shu, F. (2019). Origin of nitrogen in marine shale gas in Southern China and its significance as an indicator. Oil and Gas Geology, 40(06), 1185–1196. in Chinese with English abstract.

    Google Scholar 

  • Tian, H., Pan, L., Zhang, T. W., Xiao, X. M., Meng, Z. P., & Huang, B. J. (2015). Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China. Marine and Petroleum Geology, 62(1), 28–43.

    Article  Google Scholar 

  • Weniger, P., Kalkreuth, W., Busch, A., & Krooss, B. M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology, 84, 190–205.

    Article  Google Scholar 

  • Wang, Y., Zhu, Y. M., Liu, S. M., & Zhang, R. (2016a). Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales. Fuel, 181, 227–237.

    Article  Google Scholar 

  • Wei, S. L., He, S., Pan, Z. J., Zhai, G. Y., Dong, T., Guo, X. W., Yang, R., Han, Y. J., & Yang, W. (2020). Characteristics and evolution of pyrobitumen-hosted pores of the overmature Lower Cambrian Shuijingtuo Shale in the south of Huangling anticline, Yichang area, China: Evidence from FE-SEM petrography-ScienceDirect. Marine and Petroleum Geology, 116, 104303.

    Article  Google Scholar 

  • Wang, Y. M., Li, X. J., Chen, B., Wu, W., Dong, D. Z., Zhang, J., Han, J., Ma, J., Dai, B., Wang, H., & Jiang, S. (2018). Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk. Petroleum Exploration and Development, 45(03), 385–395. 

    Article  Google Scholar 

  • Wang, Y. F., Leng, J. G., Li, P., & Li, F. (2016b). Characteristics and its main enrichment controlling factors of shale gas of the Lower Cambrian Niutitang Formation in northeastern Guizhou Province. Journal of Palaeogeography, 18(04), 605–614. in Chinese with English abstract.

    Google Scholar 

  • Wang, R. Y., Ding, W. L., Gong, D. J., Leng, J. G., Wang, X .H., Yin, S., & Sun, Y. X.  (2016c). Gas preservation conditions of marine shale in northern Guizhou area: A case study of the Lower Cambrian Niutitang Formation in the Cen’gong block, Guizhou Province. Oil and Gas Geology, 37(01), 45–55. in Chinese with English abstract.

    Google Scholar 

  • Wang, Y. M., Dong, D. Z., Cheng, X. Z., Huang, J. L., Wang, S. F., & Wang, S. Q. (2014). Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case of the Lower Cambrian Qiongzhusi Shale in southern Sichuan Basin. Natural Gas Industry, 34(8), 1–7. in Chinese with English abstract.

    Google Scholar 

  • Wang, D. L., Zhang, Y., Lu, S. F., Guo, J. Y., Li, Z. S., Mo, W. L., Wang, M., & Wang, Y. F. (2012a). The simulation experiment on gas-generating potential of over mature source rocks. Acta Sedimantalogical Sinica, 30(06), 1172–1179. in Chinese with English abstract.

    Google Scholar 

  • Wang, X. F., Liu, W. H., Xu, Y. C., & Zheng, J. J. (2012b). Effect of water medium on hydrogen isotope composition of gaseous hydrocarbon formation and evolution. Science China: Earth Sciences, 42(1), 103–110. in Chinese with English abstract.

    Google Scholar 

  • Wang, W. Q. (2019). Simulation experiment of radiation hydrogen generation in source rock system and its geological significance (pp. 30–50). Northwest University (in Chinese with English abstract).

  • Wang, X. M., Jiang, Z. X., Jiang, S., Chang, J. Q., Li, X. H., Wang, X., & Lin, Z. (2020). Pore evolution and formation mechanism of organic-rich shales in the whole process of hydrocarbon generation: Study of artificial and natural shale samples. Energy & Fuels, 34(1), 332–347.

    Article  Google Scholar 

  • Wang, D. F., Wang, Y. M., Dong, D. Z., Wang, S. Q., Huang, J. L., Huang, Y. B., & Wang, S. F. (2013). Quantitative characterization of reservoir space in the Lower Cambrian Qiongzhusi Shale. Southern Sichuan Basin. Natural Gas Industry, 33(7), 1–10. in Chinese with English abstract.

    Google Scholar 

  • Wang, S. F., Zhang, Z. Y., Dong, D. Z., Wang, Y. M., Li, X. J., Hu, J. W., Huang, J. L., & Guan, Q. Z. (2016d). Microscopic pore structure and reasons making reservoir property weaker of Lower Cambrian Qiongzhusi shale, Sichuan Basin, China. Natural Gas Geoscience, 27(9), 1619–1628. in Chinese with English abstract.

    Google Scholar 

  • Wu, Y. W., Gong, D. J., Li, T. F., Wang, X., & Tian, H. (2019). Distribution characteristics of nitrogen-bearing shale gas and prospective areas for exploration in the Niutitang Formation in the Qianzhong uplift and adjacent areas. Geochimica (Beijing), 48(06), 613–623. in Chinese with English abstract.

    Google Scholar 

  • Xu, S., Yang, F., Feng, Z. Q., Liu, R., & Lei, G. (2022). Editorial: Advances in the Exploration and Development of Unconventional Oil and Gas: From the Integration of Geology and Engineering. Frontiers in Earth Science, Economic Geology, 10, 930704.

    Article  Google Scholar 

  • Xu, Z., Shi, W. Z., Zhai, G. Y., Bao, S. J., Zhang, X. M., Wang, R., Wang, J., Wang, C., & Yuan, Q. (2017). Relationship differences and causes between porosity and organic carbon in black shales of the lower Cambrian and the lower Silurian in Yangtze Area. Earth Science, 42(7), 1223–1234. in Chinese with English abstract.

    Google Scholar 

  • Xiong, L. (2019). The characteristics of pore development of Lower Cambrian organic-rich shale in Sichuan Basin and its periphery. Natural Gas Geoscience, 30(9), 1319–1331. in Chinese with English abstract.

    Google Scholar 

  • Xiao, X. M., Wang, M. L., Wei, Q., Tian, H., Pan, L., & Li, T. F. (2015). Evaluation of Lower Paleozoic shale with shale gas prospect in south China. Natural Gas Geoscience, 26(8), 1433–1445.

    Google Scholar 

  • Xu, S., Hao, F., Shu, Z. G., Zhang, A. H., & Yang, F. (2020a). Pore structures of different types of shales and shale gas exploration of the Ordovician Wufeng and Silurian Longmaxi successions in the eastern Sichuan Basin, South China. Journal of Asian Earth Sciences, 193, 104271.

    Article  Google Scholar 

  • Xu, S., Gou, Q. Y., Hao, F., Zhang, B. Q., Shu, Z., Lu, Y. B., & Wang, Y. X. (2020b). Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba Shale Gas Field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Marine and Petroleum Geology, 114, 104211.

    Article  Google Scholar 

  • Xie, Z. Y., Li, Z. S., Wang, C. Y., & Hao, C. G. (2008). Study on generation of hydrogen sulfide by simulation experiment. Petroleum Geology and Experiment, 30(02), 192–195+199 (in Chinese with English abstract).

  • Xiong, Y. Q., Geng, A. S., Pan, C. C., Liu, D. Y., Li, C., & Peng, P. A. (2004). Hydrogen isotopic compositions of individual n-alkanes in terrestrial source rocks. Petroleum Exploration and Development, 31(1), 60–63.

    Google Scholar 

  • Xi, Z. D., Tang, S. H., Wang, J., Yang, G. Q., & Li, L. (2018). Formation and development of pore structure in marine-continental transitional shale from northern China across a maturation gradient: Insights from gas adsorption and mercury intrusion. International Journal of Coal Geology, 200, 87–102.

    Article  Google Scholar 

  • Xu, L. L., Wen, Y. R., Zhang, Y. L., Ren, Z. J., Yang, J., Wen, J. H., Chen, W., Luo, F., & Duan, K. (2021). Gas-bearing characteristics and preservation conditions of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale in western Hubei. Petroleum Geology and Experiment, 43(03), 395–405. in Chinese with English abstract.

    Google Scholar 

  • Yang, F., Ning, Z. F., Zhang, S. D., Hu, C. P., Du, L. H., & Liu, H. Q. (2013). Characterization of pore structures in shales through nitrogen adsorption experiment. Natural Gas Industry, 33(4), 135–140. in Chinese with English abstract.

    Google Scholar 

  • Yang, J. Z., Xia, J., Wang, S. B., & Song, Z. G. (2016). Quartz-tube thermal simulation study on the pore structure transformation in over-matured shales. Geochimica (Beijing), 45(04), 407–418. in Chinese with English abstract.

    Google Scholar 

  • Yang, S. Y., Zhang, B. B., Zheng, X. F., Chen, G. H., Ju, Y. W., & Chen, B. Z. (2021). Insight into the adsorption mechanisms of CH4, CO2, and H2O molecules on illite (001) surfaces: A first-principles study. Surfaces and Interfaces, 23, 101039.

    Article  Google Scholar 

  • Zhang, K., Li, Z., Jiang, S., Jiang, Z. X., Wen, M., Jia, C. Z., Song, Y., Liu, W. W., Huang, Y. Z., Xie, X. L., Liu, T. L., Wang, P. F., Shan, C. A., & Wu, Y. H. (2018a). Comparative analysis of the siliceous source and organic matter enrichment mechanism of the upper ordovician-lower silurian shale in the upper-lower Yangtze area. Minerals, 8(7), 283.

    Article  Google Scholar 

  • Zhang, T. W., Ellis, G. S., Rupple, S. C., Milliken, K., & Yang, R. (2012). Effect of organic matter type and thermal maturity on methane adsorption in shale-gas systems. Organic geochemistry, 47(6), 120–131.

    Article  Google Scholar 

  • Zargari, S., Canter, K. L., & Prasad, M. (2015). Porosity evolution in oil-prone source rocks. Fuel, 153, 110–117.

    Article  Google Scholar 

  • Zhao, W. Z., Li, J. Z., Yang, T., Wang, S. F., & Huang, J. L. (2016). Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development, 43(04), 499–510.

    Article  Google Scholar 

  • Zhang, T. W., Zhang, Y. J., Jia, M., Shao, D. Y., & Yan, J. P. (2018b). Key scientific issues on controlling the variation of gas contents of Cambrian marine shales in southern China. Bulletin of Mineralogy, Petrology and Geochemistry, 37(04), 572–579+794–795 (in Chinese with English abstract).

  • Zhai, G. Y., Bao, S. J., Wang, Y. F., Chen, K., Wang, S. J., Zhou, Z., Song, T., & Li, H. H. (2017). Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area. Hubei Province. Acta Geoscientica Sinica, 38(04), 441–447. in Chinese with English abstract.

    Google Scholar 

  • Zuo, J. X., Peng, S. C., Qi, Y. P., Zhu, X. J., Bagnoli, G., & Fang, H. B. (2018). Carbon-Isotope excursions recorded in the cambrian system, south China: Implications for mass extinctions and sea-level fluctuations. Journal of Earth Science, 29(03), 479–491.

    Article  Google Scholar 

  • Zhang, Y. L., Duan, K., Liu, Z. X., Jin, C. S., Chen, K., & Luo, F. (2019). Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei. Petroleum Geology and Experiment, 41(05), 691–698. in Chinese with English abstract.

    Google Scholar 

  • Zhao, J. H., Jin, Z. J., Lin, C. S., Liu, G. X., Liu, K. Y., Liu, Z. B., & Zhang, Y. Y. (2019). Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region. Oil and Gas Geology, 40(04), 701–715. in Chinese with English abstract.

    Google Scholar 

  • Zhai, G. Y., Li, J., Jiao, Y., Wang, Y. F., Liu, G. H., Xu, Q., Wang, C., Chen, R., & Guo, X. B. (2019). Applications of chemostratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots—taking the Cambrian black shales in western Hubei as an example. Marine and Petroleum Geology, 109, 547–560.

    Article  Google Scholar 

  • Zhang, Y. F., Yu, B. S., Pan, Z. J., Hou, C. H., Zuo, Q. W., & Sun, M. D. (2020). Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 74, 103089.

    Article  Google Scholar 

  • Zhong, N. N., Sherwood, N., & Wilkins, R. W. T. (2000). Laserinduced fluorescence of macerals in relation to its hydrogen richness. Science Bulletin, 45(3), 323–328. in Chinese with English abstract.

    Google Scholar 

  • Zhou, Z. J., & Chen, D. Z. (1999). The properties and evolution of illite at high temperature. Mineralogy and Petrology, 19(03), 20–22. in Chinese with English abstract.

    Google Scholar 

  • Zhai, G. Y., Wang, Y. F., Liu, G. H., Lu, Y. C., He, S., Zhou, Z., Li, J., & Zhang, Y. X. (2020). Accumulation model of the Sinian-Cambrian shale gas in western Hubei Province, China. Journal of Geomechanics, 26(5), 696–713. in Chinese with English abstract.

    Google Scholar 

Download references

Acknowledgements

We are indebted to associate editor and three anonymous reviewers for their insightful comments and suggestions that have greatly improved the manuscript. This research was financially supported by the National Natural Science Foundation of China [Grant Nos. 42030804, U1810201, and U19B6003-03-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Xiao.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xiao, X., Gai, H. et al. Nanopore Structure Evolution of Lower Cambrian Shale in the Western Hubei Area, Southern China, and its Geological Implications based on Thermal Simulation Experimental Results. Nat Resour Res 32, 731–754 (2023). https://doi.org/10.1007/s11053-022-10149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10149-1

Keywords

Navigation